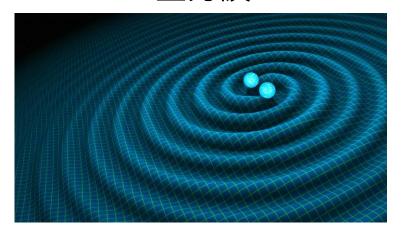
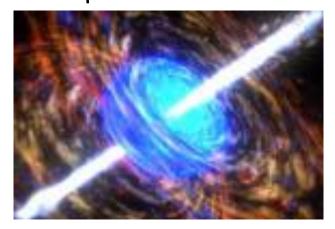
深層学習を用いた MITSuME望遠鏡画像からの 突発天体検知

東京工業大学 河合研究室 修士1年 飯田康太

共同研究者


谷津 陽一, 伊藤 亮介, 村田 勝寛, 橘 優太朗, 河合 誠之 (東工大理), Yan Long, 篠田 浩一, 井上 中順 (東工大情報理工), 下川辺 隆史 (東京大)

目的


突発天体 ———

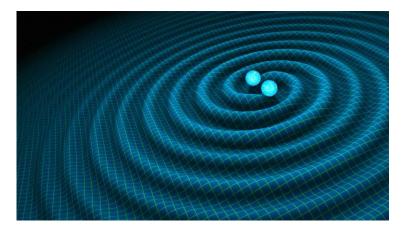
- ▶発生場所・時間は予測不可能
- → 短い許容時間

重力波

γ線バースト

参照: NASA

第9回光赤外線天文学大学関連携ワーク ショップ


目的

突発天体 ——

- ▶発生場所・時間は予測不可能
- → 短い許容時間

特に重力波は、位置決定精度が極めて低い:エラー領域~100 deg²

重力波

γ線バースト

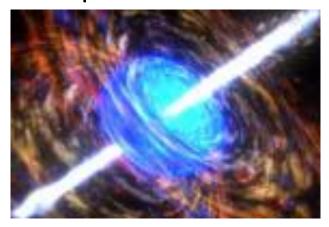
参照: NASA

第9回光赤外線天文学大学関連携ワーク ショップ

目的


突発天体 ——

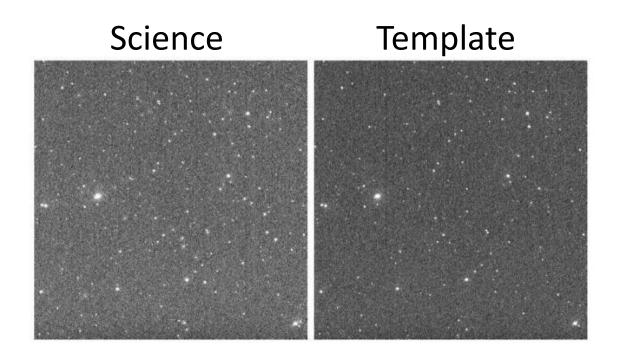
- ▶発生場所・時間は予測不可能
- ▶短い許容時間

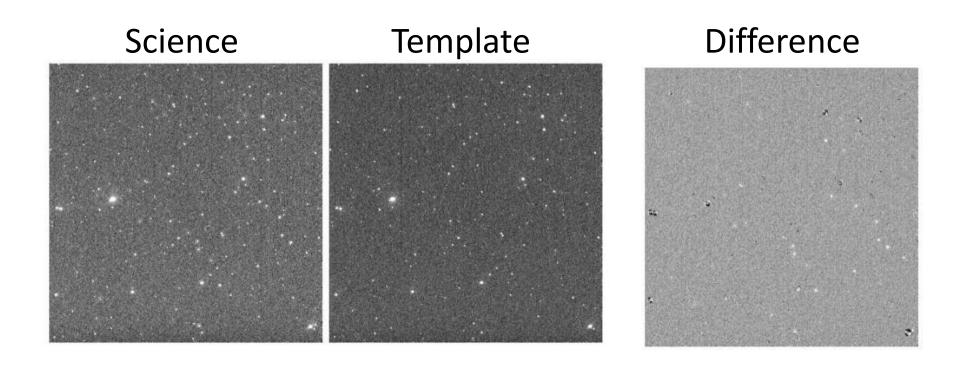

特に重力波は、位置決定精度が極めて低い:エラー領域~100 deg2

自動的かつ迅速な突発天体検知技術の確立を目指す

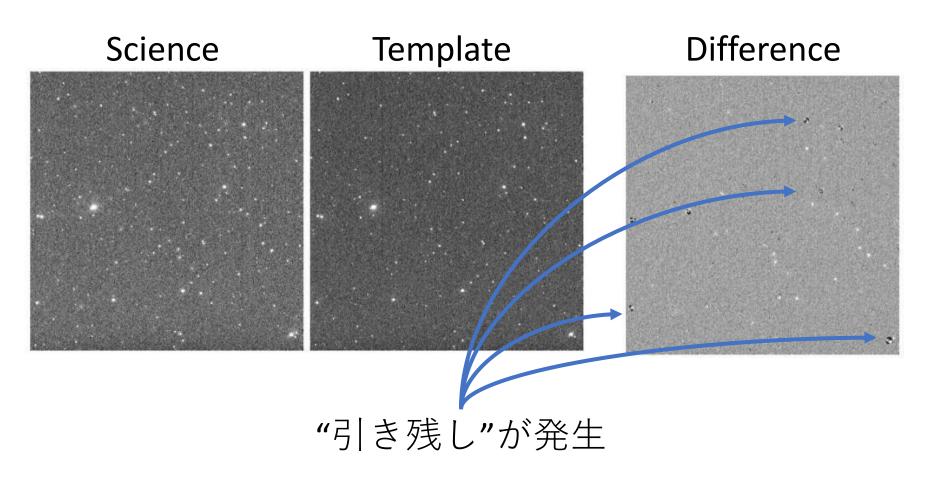
重力波

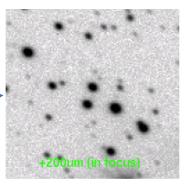
γ線バースト



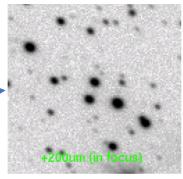

参照: NASA

第9回光赤外線天文学大学関連携ワーク ショップ

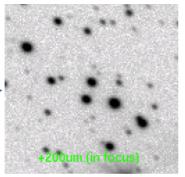

Science


第9回光赤外線天文学大学関連携ワーク ショップ

第9回光赤外線天文学大学関連携ワークショップ

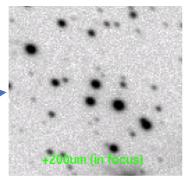

- ▶"引き残し"の原因
 - ・点拡がり関数の複雑さ
 - 光学的な収差や回折/
 - 大気の揺らぎ

- ▶"引き残し"の原因
 - ・点拡がり関数の複雑さ
 - 光学的な収差や回折/
 - 大気の揺らぎ



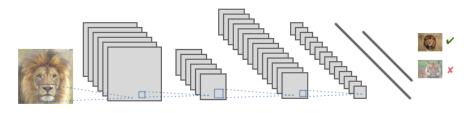
膨大な時間

- ▶"引き残し"の原因
 - ・点拡がり関数の複雑さ
 - 光学的な収差や回折/
 - 大気の揺らぎ

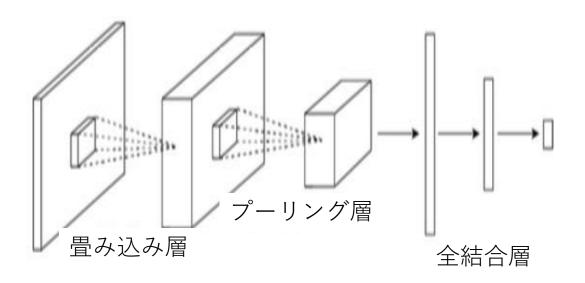


膨大な時間

最適??


- ▶"引き残し"の原因
 - ・点拡がり関数の複雑さ
 - 光学的な収差や回折
 - 大気の揺らぎ

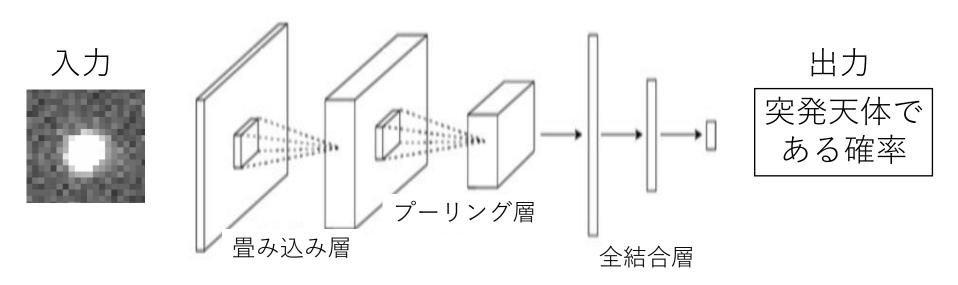
- ▶ 畳み込みニューラルネットワークの利用
 - 一旦学習を終えれば、瞬時に識別が可能



第9回光赤外線天文学大学関連携ワーク ショップ

4/13

畳み込みニューラルネット ワーク


- 画像、動画認識
- 畳み込み層、プーリング層、全結合層
- 畳み込み演算で特徴圧縮
- 重要な情報を保持したまま画像処理

第9回光赤外線天文学大学関連携ワークショップ

畳み込みニューラルネット 4/13 ワーク

- 画像、動画認識
- 畳み込み層、プーリング層、全結合層
- 畳み込み演算で特徴圧縮
- 重要な情報を保持したまま画像処理

第9回光赤外線天文学大学関連携ワーク ショップ

入力

2	0	1	1	1
2	1	1	1	1
1	1	2	0	0
0	2	2	1	2
1	1	0	1	0

1	0
1	0

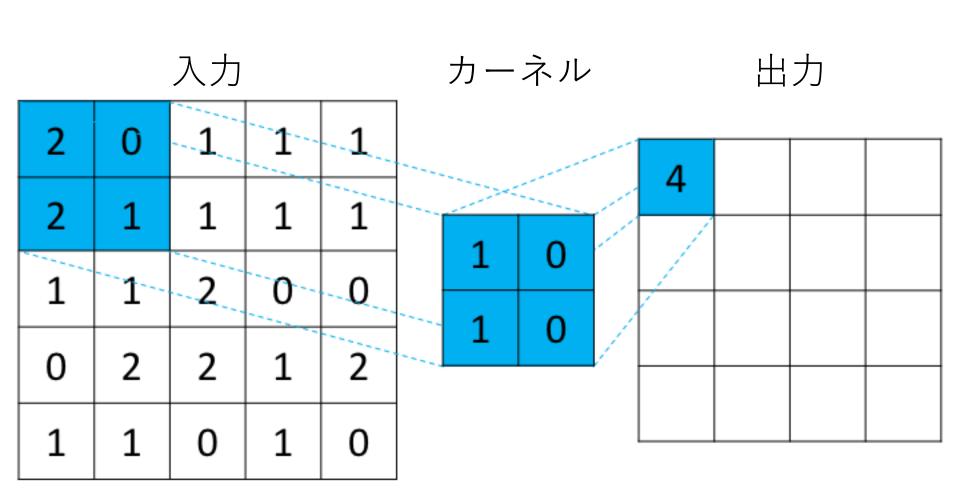
入力

2	0	1	1	1
2	1	1	1	1
1	1	2	0	0
0	2	2	1	2
1	1	0	1	0

1	0
1	0

入力

2 ×1	0 ×0	1	1	1
2 ×1	1 ×0	1	1	1
1	1	2	0	0
0	2	2	1	2
1	1	0	1	0


1	0
1	0

入力

2 ×1	0 ×0	1	1	1
2 ×1	1 ×0	1	1	1
1	1	2	0	0
0	2	2	1	2
1	1	0	1	0

1	0
1	0

$$2 + 0 + 2 + 0 = 4$$

第9回光赤外線天文学大学関連携ワーク ショップ

Maxプーリング層

入力					
4	1	2	2		
3	2	3	1		
1	3	4	1		
1	3	2	2		

Maxプーリング層

カーネルサイズ = 2×2 , ストライド = 1

4	1	2	2
3	2	3	1
1	3	4	1
1	3	2	2

Max プーリング層

カーネルサイズ = 2×2 , ストライド = 1

	入	力		
4	1	2	2	
3	2	3	1	:-:::::::::::::::::::::::::::::::::::::
1	3	4	1	
1	3	2	2	

Maxプーリング層

カーネルサイズ = 2×2 , ストライド = 1

	入	.力		出力
4	1	2	2	
3	2	3	1	:::::::::::::::::::::::::::::::::::::::
1	3	4	1	
1	3	2	2	

入力画像サイズは天体の明るさにより可変 ⇨ Max プーリングの代わりにRolプーリングを使用

> 第9回光赤外線天文学大学関連携ワーク ショップ

- Rol = Region of Interest(関心領域)
- 物体検知の分野で活躍
- 異なるサイズのインプットに対してMaxプーリング
- 固定サイズの出力

2	4	1	2
1	3	2	3
1	1	3	4
2	1	3	2

- Rol = Region of Interest(関心領域)
- 物体検知の分野で活躍
- 異なるサイズのインプットに対してMaxプーリング
- 固定サイズの出力

分割数=2

2	4	1	2
1	3	2	3
1	1	3	4
2	1	3	2

- Rol = Region of Interest(関心領域)
- 物体検知の分野で活躍
- 異なるサイズのインプットに対してMaxプーリング
- 固定サイズの出力

分割数=2

2	4	1	2
1	3	2	3
1	1	3	4
2	1	3	2

- Rol = Region of Interest(関心領域)
- 物体検知の分野で活躍
- 異なるサイズのインプットに対してMaxプーリング
- 固定サイズの出力

分割数= 2

	The state of the s	on a second		I
2	4	1	2	出力
1	3	2	3	
1	1	3	4	
2	1	3	2	

- Rol = Region of Interest(関心領域)
- 物体検知の分野で活躍
- 異なるサイズのインプットに対してMaxプーリング
- 固定サイズの出力

分割数=2

入力1

2	4		2
1	3	2	3
1	1	3	4
2	1	3	2

出力1

4

入力 2

2	4	1	2	0
1	3	2	3	1
1	1	3	4	4
2	1	3	2	2
1	2	0	3	1

第9回光赤外線天文学大学関連携ワーク

ショップ

- Rol = Region of Interest(関心領域)
- 物体検知の分野で活躍
- 異なるサイズのインプットに対してMaxプーリング
- 固定サイズの出力

分割数=2

入力1

2	4		2
1	3	2	3
1	1	3	4
2	1	3	2

出力1

4

入力 2

2	4	1	2	0
1	3	2	3	1
1	1	3	4	4
2	1	3	2	2
1	2	0	3	1

第9回光赤外線天文学大学関連携ワーク

ショップ

- Rol = Region of Interest(関心領域)
- 物体検知の分野で活躍
- 異なるサイズのインプットに対してMaxプーリング
- 固定サイズの出力

分割数=2

入力1

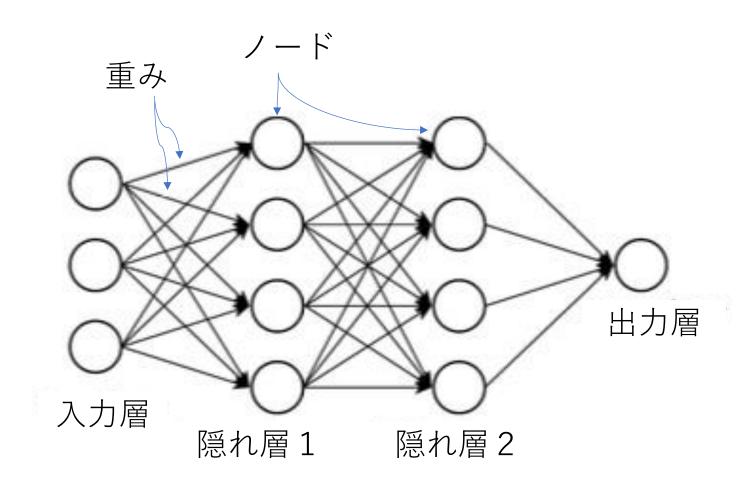
2	4		2
1	3	2	3
1	1	3	4
2	1	3	2

出力1

4

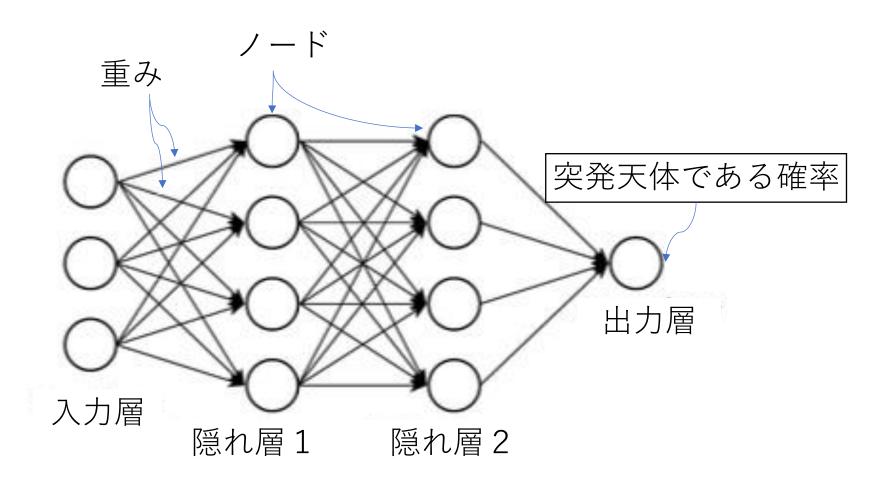
2	4	1	2	0
1	3	2	3	
1	1	3	4	4
2	1	3	2	2
1	2	0	3	1

入力2

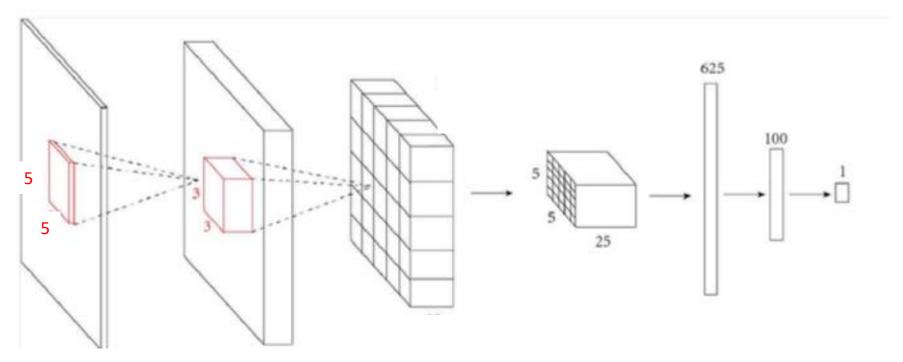

出力2

4

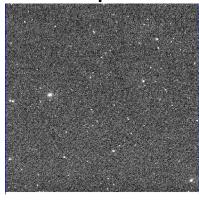
第9回光赤外線天文学大学関連携ワーク

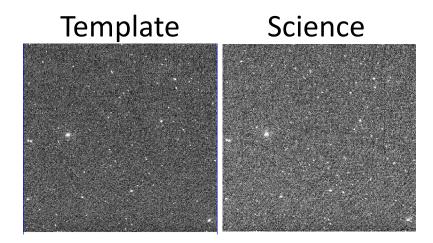

ショップ

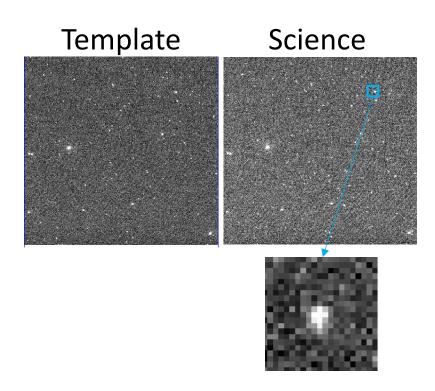
全結合層


第9回光赤外線天文学大学関連携ワーク ショップ

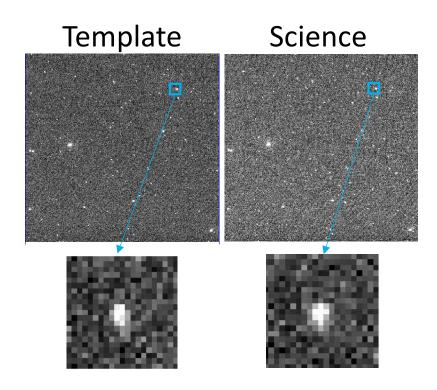
全結合層

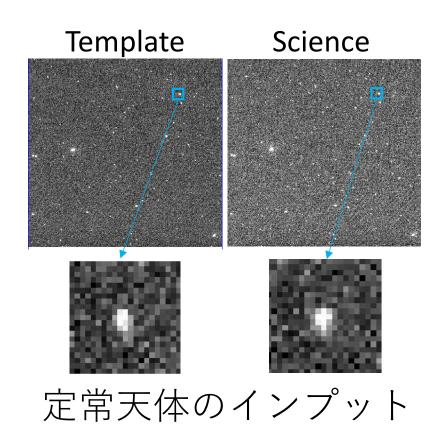

第9回光赤外線天文学大学関連携ワーク ショップ

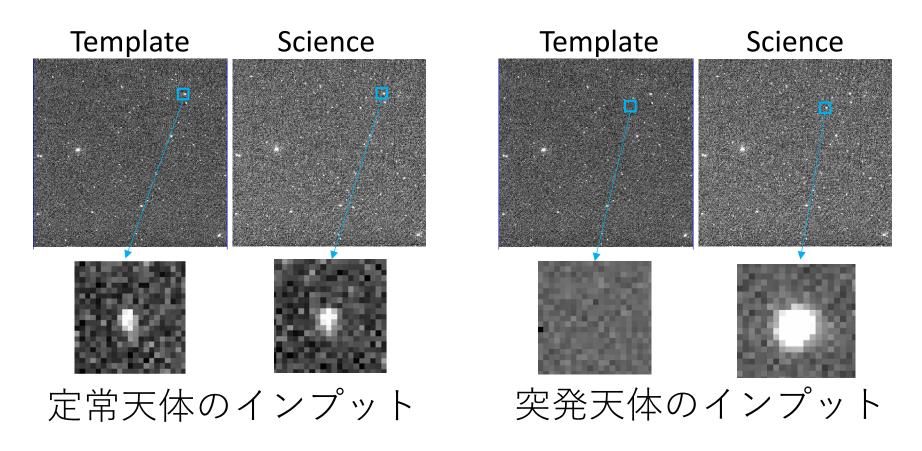

ネットワーク



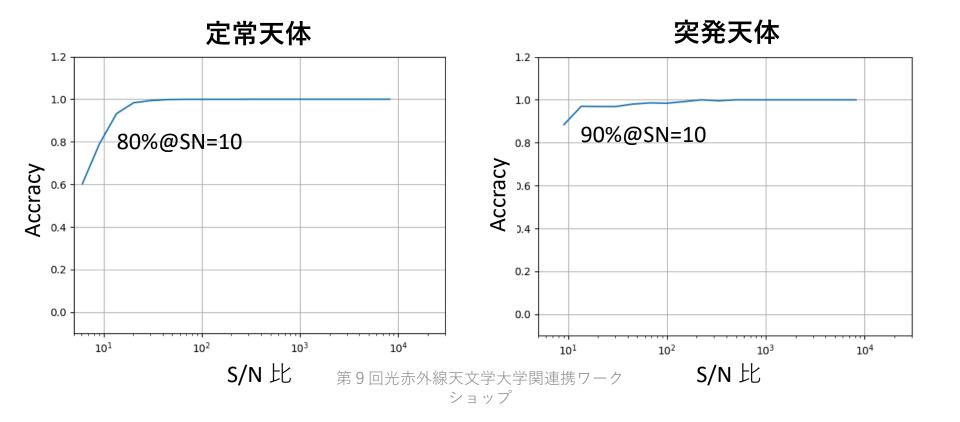
畳み込み層1 畳み込み層2 Rolプーリング層 全結合層


Template




第9回光赤外線天文学大学関連携ワークショップ

第9回光赤外線天文学大学関連携ワークショップ


第9回光赤外線天文学大学関連携ワーク ショップ

第9回光赤外線天文学大学関連携ワーク ショップ

性能評価 #SN比 vs Accuracy

Accuracy = <u>識別成功数</u> (定常または突発天体の)全ての点源

実行時間

• 環境

• Processor: 2.5GHz Intel Core i5

• RAM: 8 GB (1600 MHz DDR3)

• 実行時間:

- 13.1 sec for 5074 sources
- 2.6 ms/source

まとめ

- ➤MITSuME明野望遠鏡データセットと CNNを用いて突発天体識別器を開発
- ▶明るい天体に対して、高い精度で識別成功

> Future work

- 暗い天体や、他の天体と重なっている天体に対する精度向上を図る
- データセット、あるいはネットワークそのものの 変更も検討中