Trigonometric Distance to IRAS 20056+3350: Massive Star Forming Region on the Solar Circle

Ross Burns - Kagoshima-U. D2

T. Handa, T. Nagayama, T. Omodaka, A. Nakagawa,
H. Nakanishi, M. Hayashi, M. Shizugami

Conclusions

- Distance and proper motion: $\mathrm{D}=4.69 \pm 0.62 \mathrm{kpc}$:
$\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right)=(-2.62 \pm 0.33,-5.65 \pm 0.52) \mathrm{mas} / \mathrm{yr}$.
- IRAS 20056+3350 is on the Solar circle at the tip of the Local Arm.
- IRAS 20056+3350 is a HMSFR ($\mathrm{M} \star \geq 16 \mathrm{Mo}$).
- Galactic angular rotation (special geometry) $\Omega_{0}=29.75 \pm 2.29 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$.

Conclusions Problems

- Distance and proper motion:
$\mathrm{D}=4.69 \pm 0.62 \mathrm{kpc}$. Maser elongation $\left(\mu_{\alpha} \cos \delta, \mu_{\sigma}\right)=(-2.62 \pm 0.33,-5.65 \pm 0.52) \mathrm{mas} / \mathrm{yr}$. Only one lobe traced by masers
- IRAS 20056+3350 is on the Solar circle at the tip of the Local Arm. How can we show that IRAS 20056+3350 is on the Solar circle?
- IRAS 20056+3350 is a HMSFR
$(\mathrm{M} \star \geq 16 \mathrm{Mo})$. How can we prove it is a HMSFR?
- Galactic angular rotation (special geometry) $\Omega_{0}=29.75 \pm 2.29 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$. Is this value reasonable?
\#1 Trigonometric distance of the IRAS 20056+3350 SFR

\#1 Trigonometric distance

- Observations: 7 epochs with VERA (Dual-beam mode)
- Total: 4 spots Parallax: 2 spots
- Data reduction: AIPS
- R.A. bad fitting

Why?

\#1 Trigonometric distance:
 Maser structure

- Maser elongated in R.A. direction.
- Emission smearing.

Can we evaluate the maser structure effect?

\#1 Trigonometric distance: Maser structure effect

In the absence of acceleration spot separation should be linear vs time.

Deviation from a linear fit indicates bad astrometric accuracy

\#1 Trigonometric distance: Maser structure effect

\#1 Trigonometric distance: Maser structure effect

Maser structure is a significant error in our VERA observations
\#2 IRAS 20056+3350 on the Solar circle, at the tip of the Local Arm.

\#2 IRAS 20056+3350: Solar circle, tip of the Local Arm

\#3 Physical nature of the IRAS 20056+3350 SFR
\#3 IRAS 20056+3350 is a HMSFR:
Wood. \& Churchwell., 1989, ApJ, 340, 265 Archive data

Re-evaluated archive data:

$$
\mathrm{L}=24247 \mathrm{~L} \odot
$$

$$
M \star=16 M \odot
$$

$$
\mathrm{MH}_{2}=1200 \mathrm{M} \odot \quad *
$$

$$
\text { Line of sight outflow } *
$$

* Original data: Casoli, F., et al. 1986, A\&A, 169, 281
- Original data: Zhang, Q., et al. 2005, ApJ, 625, 864
\#3 IRAS 20056+3350 is a HMSFR: Spectral energy distribution

Photometry data:

- UKIDSS (J, H, K)
- AKARI IRC $(9,18 \mu \mathrm{~m})$
- WISE (3.4, 4.6, 12, $22 \mu \mathrm{~m}$)
- IRAS ($12,24,60,100 \mu \mathrm{~m})$
- JCMT (450, $850 \mu \mathrm{~m})$

SED model
$\mathrm{L}=24500 \mathrm{~L} \odot$
$\mathrm{M} \star=18.4 \mathrm{M}$ 。
$M_{\text {env }}=3300 \mathrm{M} \odot$
Inclination $=18^{\circ}$
(near line-of-sight)
SED fitting software: Robitaille, T. P., et al., 2007, ApJS, 169, 328
\＃3 IRAS 20056＋3350 is a HMSFR： Spectral energy distribution

Archive data：
$\mathrm{L}=24247 \mathrm{~L}$ 。
$\mathrm{M} \star=16 \mathrm{M} \odot$
$\mathrm{MH}_{2}=1200 \mathrm{M} \odot$
Line－of－sight outflow

SED model
L＝ 24500 L 。
M ネ $=18.4 \mathrm{M}$ •
$\mathrm{M}_{\text {env }}=3300 \mathrm{M}$ 。
Inclination $=18^{\circ}$

Consistency
 is reassuring

\#4 Galactic angular rotation of the LSR, Ω_{0}

\#4 Galactic angular rotation of the LSR, Ω_{0}

Assumption:
Maser proper motions w.r.t driving source --> small
i.e. the largest velocity components is
along the line-of-sight

Approximation:
 Group motion of masers --> reasonable approximation of source proper motion

\#4 Galactic angular rotation of the LSR, Ω_{0}

- $D=4.69 \pm 0.62 \mathrm{kpc}$.
- IRAS 20056+3350 is on the Solar circle
- Proper motion:
$\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right)=(-2.62 \pm 0.33,-5.65 \pm 0.52) \mathrm{mas} / \mathrm{yr}$.
- $\mathrm{V}_{\mathrm{LSR}}=9 \pm 1 \mathrm{~km} / \mathrm{s}$

Using Equation 1. from Nagayama et al. 2011, PASJ, 63, 23

$$
\Omega_{0}=-a_{0} \mu_{l}+v_{r}\left(\frac{1}{D \tan l}-\frac{1}{R_{0} \sin l}\right)
$$

VERA observations of IRAS 20056+3350 give:
$\Omega_{0}=29.75 \pm 2.29 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$.

\#4 Galactic angular rotation of the LSR, Ω_{0}

Values of $\Omega 0$: tangent point and Solar circle SFRs (special geometry)

> IRAS 20056+3350:
> $\Omega_{0}=29.75 \pm 2.29 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$.

Consistent with other SFRs At tangent points and Solar circle

Burns, R. A., Yamaguchi, Y., Handa, T., et al. 2014, accepted for PASJ, arXiv:1404.5506

Conclusions Problems Solutions

- Distance and proper motion:
$\mathrm{D}=4.69 \pm 0.62 \mathrm{kpc}$. Maser elongation $\sqrt{ }$ Use Dec offsets $\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right)=(-2.62 \pm 0.33,-5.65 \pm 0.52) \mathrm{mas} / \mathrm{yr}$.

Only one lobe traced by masers

- IRAS 20056+3350 is on the Solar circle Line-of-sight inclination at the tip of the Local Arm. How can we show that IRAS 20056+3350 is on the Solar circle?
- IRAS 20056+3350 is a HMSFR $R_{\star} \approx R_{0,} V_{L S R}=9 \mathrm{~km} / \mathrm{s}$ ($\mathrm{M} \star \geq 16 \mathrm{Mo}$). How can we prove it is a HMSFR?

Archive data << SED model

- Galactic angular rotation (special geometry) $\Omega_{0}=29.75 \pm \mathbf{2 . 2 9} \mathbf{k m} / \mathrm{s} / \mathrm{kpc}$. Is this value reasonable? Consistent with tangent point and Solar circle SFRs

Thank you for listening

