茨城 32-m 鏡による 6.7 GHz メタノールメーザー源の単一鏡強度モニター

6.7 GHz メタノールメーザー

• 大質量星形成活動のみに付随

- (中小質量星形成活動に付随した検出例は、今のところ無い)

- 900天体程度が発見されている
 - (Caswell+10, Green+10, ...)
- 中心星により暖められたダストからの赤外線放射による励起
 =>比較的強度は安定と予想される
 (vs. 衝突により励起される H2O メーザー)

Flux (Jy)

6.7 GHz メタノールメーザー源の 周期強度変動

12 天体が周期的な変動 :連続的/間欠的

Table 2. Comparison of variation properties among periodic 6.7 GHz methanol maser sources.

Name	Period [day]	Variation pattern	Variation range [Jy]	Reference
G12.89+0.46	29.5	sinusoidal	5 - 12	1
IRAS22198 + 6336	34.5	intermittent	<1.3–44	this paper
G338.93-0.06	133	sinusoidal	20 - 50	2
G22.357 + 0.066	179	intermittent	1–6	3
G339.62-0.12	201	sinusoidal	30-100	2
G328.24 - 0.55	220	intermittent	200 - 400	2
$G37.55 {+} 0.20$	237	intermittent	0.5 - 5	4
G9.62 + 0.20E	246	intermittent	4500 - 5500	5
G12.68-0.18	307	sinusoidal	40–100	6
G188.95+0.89	404	sinusoidal	500-600	2
G331.13-0.24	504	sinusoidal	1 - 20	2
G196.45 - 1.68	668	sinusoidal	20–40	6
References — 1: Goed	hart et al.	(2009), 2: Goedhart e	t al. (2007), 3: Szyr	mczak et al.

(2011), 4: Araya et al. (2010), 5: Goedhart et al. (2003), and 6: Goedhart et al. (2004).

Fujisawa+14a

6.7 GHz メタノールメーザー源の 強度変動

突発的な増光を示すものもある

周期変動の変動機構: 様々なシナリオ (e.g., Goedhart+ 08)

- Stellar pulsational instability

 - 大質量原始星の脈動不安定モデル
- Circumbinary accretion disk
 粘性による角運動量輸送により、ガス降着を励起
- Precessing jets
- Density enhancements in a rotating accretion disk

- 中心星放射, ダスト放射の遮蔽

大質量原始星の脈動不安定モデル (Inayoshi+13)

- ・ 星半径最大時に不安定
 帯が存在
 - $> 10^{-3} M_{0} \text{ yr}^{-1}$
 - $\sim 10^3$ yr 滞在
- 周期: 数10-数100日
- P-L 関係も予言
 - 原始星時代の物理パラ メータ(質量、半径、星表面 の降着率)と直接相関
 - Sub-au スケールの物理
 パラメータを測定する唯一
 の手法!?

問題意識·研究目的

- 長期・高頻度でモニターされたのはわずか~60天体
 - メタノールメーザーの母数: 900天体以上

(e.g., Pestalozzi+ 05; Xu+ 09; Caswell+ 10; Green+ 10)

- 大部分が南半球においてモニターされている
 - •期間: 5-10年, 頻度: 1-2週間 (e.g., Goedhart+ 04)
- 北半球において、観測可能な天体を、無バイアスに
 長期・高頻度に強度変動モニター!
- P-L 関係の観測的検証を通じて、周期変動の脈動
 不安定説を検証することを目指して、周期変動天体のサンプル数増加を目指す!

単一鏡モニタープロジェクト:観測概要

- 6.7 GHz メタノールメー
 ザー観測候補天体
 - 母体:~900天体
 - 既存のメタノールカタログを コンパイル
 - 選出条件:
 - 1. 赤緯 ≧ –30 deg
 - 2 arcmin 内に候補天体 が複数存在する場合、最 も強度が強い天体方向に 対してのみ観測

384天体

- 望遠鏡:日立32-m
 - ・ 望遠鏡自体の詳細は
 B09b(米倉 他) 講演参照
- 期間(継続中):
 - 2012/12/30 ~ 2014/01/10
 - 2014/05~
- 運用頻度:毎日
- 観測頻度:

9日に1度/各天体

☞100日以上の中・長周期 変動の検出に適当

結果(1):周期変動天体

- 検出率:(少なくとも)6/388 天体 => 1.5 %
- 新検出:4/6天体

天体名	014.23-00.50	028.02-00.44	036.70+00.09	075.76+00.34
周期	~ 170 日	~ 120 日	~ 55 日	~ 120 日

・ 既知の天体:2

Table 2. Comparison of variation properties among periodic 6.7 GHz methanol maser sources.

	Name	Period	Variation pattern	Variation range	Reference
		[day]		[Jy]	
	G12.89 + 0.46	29.5	sinusoidal	5 - 12	1
	IRAS22198+6336	34.5	intermittent	<1.3-44	this paper
	G338.93-0.06	133	sinusoidal	20-50	2
\bigcirc	G22.357 + 0.066	179	intermittent	1–6	3
-	G339.62 - 0.12	201	sinusoidal	30 - 100	2
	G328.24 - 0.55	220	intermittent	200 - 400	2
\bigcirc	$G37.55 \pm 0.20$	237	intermittent	0.5 - 5	4
\bigcirc	G9.62 + 0.20E	246	intermittent	4500 - 5500	5
\smile	G12.68 - 0.18	307	sinusoidal	40 - 100	6
	G188.95 + 0.89	404	sinusoidal	500-600	2
	G331.13-0.24	504	sinusoidal	1 - 20	2
	G196.45 - 1.68	668	sinusoidal	20 - 40	6

References — 1: Goedhart et al. (2009), 2: Goedhart et al. (2007), 3: Szymczak et al. (2011), 4: Araya et al. (2010), 5: Goedhart et al. (2003), and 6: Goedhart et al. (2004).

G 036.70+00.09

G 028.02-00.44

G 075.76+00.34

G 014.23-00.50

P-L 関係: アップグレード版

G33.641-0.228

まとめ & 今後の展望

- モニター観測(9日に1回、継続期間1年)により、すくなくとも6天体の周期変動天体を検出。うち、<u>4 天体が新検出。</u>4天体の変動周期は、<u>~55 ~170日</u>。突発的に増光する天体もいくつか発見。
- •より長周期の天体の検出を目指す (> 200 days)
 - モニター観測を継続(~3年)
 - 観測頻度:~9日に1回
- より短周期の天体の検出を目指す (< 30 days)
 - より高頻度な観測を実施予定 (~3-4 日に1回を、数ヶ月間)
- 突発増光天体のライトカーブを求める

- 1日1回よりも高頻度な観測を実施中

・ 周期解析方法の確立(圧縮センシング:本間他)

今後の展望

- 周期解析方法の開発
 - 国立天文台の本間希樹
 氏・田崎文得氏からご協
 カ賜る
 - 圧縮センシング (2012年秋季年会 V150a,本間他) を用いた周期解析
 - 通常のフーリエ変換のよう に"0 padding"を行わない
 - より高精度に周期解析が 可能となることを期待
 - MATLABを用いたプログラ
 ミング

- G 036.70+00.09 で新検出された周期強度変動 への圧縮センシングの適用例
 - 上: ある成分の変動(赤: 観測点, 緑: FFT時の 0 padding, 青: 圧縮センシングのモデル)
 - 中:通常のFFTによる周期解析結果
 - 下: 圧縮センシングによる周期解析結果