

X-ray Polarimetry Mission IXPE (X線偏光観測衛星測IXPE)

November 11, 2020 @ 11th OISTER WS Tsunefumi Mizuno (Hiroshima Univ.) on behalf of the IXPE team

- Electrons + magnetic field
 produce synchrotron Ele
 radiation pate
- Unique probe to B (and accelerated electrons)
- High polarization degree is expected ($\Pi_{max} = \frac{p+1}{p+7/3} \sim 0.7$)
- X-ray polarimetry can probe B-field configuration around freshly-accelerated electrons $(h\omega_{\rm p} \sim 0.29 \frac{3\gamma^2 eB}{2m_{\rm e}c})$

polarization vector **L** B direction

- Reflected photons are polarized ($\Pi = \frac{1 - (\cos \theta)^2}{1 + (\cos \theta)^2}$)
- Unique probe to geometry of compact objects (light source and accretion disk) not accessible by imaging
- Also probes relativistic effect around a black hole (BH)
- We can investigate disk & space-time geometry using X-ray polarimetry

- Polarization is powerful probe to magnetic field and source geometry
 - It improves our understanding of objects
 - Multiwavelength observation is important
- X-ray polarimetry has been unexplored but is key in high-energy astrophysics
 - Probes B-field around freshly-accelerated electrons, geometry (disk & space-time) in the vicinity of BH
- IXPE is the first dedicated X-ray imagingpolarimetry observatory

IXPE Maging X-Ray Polarimetry Aray/γ-ray Polarimetry

- Only a few measurements in X-ray/ γ -ray
 - Integral (Crab, Cyg X-1) in >100 keV
 - PoGO+ (Crab, Cyg X-1) in 20-160 keV
 - ASTROSAT (Crab, Cyg X-1) in > 100 keV
 - Hitomi SGD (Crab) in >60 keV
- In soft X-ray (<10 keV), Crab Nebula is first and only positive detection

Weisskopf 18

- OSO-8 satellite (1975-)
- Graphite Bragg crystal • Crab nebula (w/o pulsar): $PD = 19\% \pm 1\%$ $PA = 156^{\circ} \pm 2^{\circ}$

- With IXPE, we can study several 10s sources in soft X-ray polarization
 - NASA SMEX mission, launch in late 2021, baseline duration 2 years
 - Japanese group provides key devices of the instruments
- Data are made public after validation

- Bilateral collaboration between NASA/MSFC and Italian Space Agency (ASI)
- Japanese group provides key devices; mirror thermal shield and Gas electron multiplier

Science Advisory Team

PI: Martin Weisskopf (NASA Marshall Space Flight Center)

- Launch on a Falcon 9 from KSC
- 600-km circular orbit at 0.1 deg inclination
- 2 year baseline mission, 1 year optional extension with GO program
- Point-and-state at pre-selected target
- Science Operation Center (SOC) at **MSFC**
- Mission Operation Center (MOC) at CU/LASP
- Malindi ground station (Singapore **Backup**) 8/27

- •2+1 years mission, point-and-state at preselected target
- Observing plans (OPs) for 1st and 2nd years are defined by the IXPE team
 - If mission is extended, OP will be GO-based
- MOC generates OP every week (TOO possible)
- Data are archived by NASA's HEASARC and released with the following timing:
 - (First three months) 1 months after completion of the observation (data for 90% of the scheduled observing time are received by MOC)
 - (After that) 1 week after the completion of the obs.

- 2-8 keV, 3 Detector Units (DUs) and Mirror Module Assemblies (MMAs)
- Japanese group provides key devices (GEM for DU and thermal shield for MMA)

 Three Detector Units (DUs) and single Detector Service Unit (on underside of deck) constitute the instrument

• Direction of photoelectron is parallel (on average) to incident X-ray polarization

Long term stability and uniformity checked with Fe-55 source Energy resolution <17%, integrated over the entire detector surface (after gain equalization)

- 3 modules, each uses a single rigid spider to support 24 shells
- light weight housing for thermal control

Energy (keV)

- 1.4 μm Polyimide film, coated with 50 nm alminium
- Supported on 97.5% transparent stainless-steel mesh (on Al frame)
- Transmission factor 90% at 2 keV
- Similar to shields flown on Hitomi

- Time to reach minimum detectable polarization (MDP) ~100 times shorter than that of OSO-8
- Various classes of sources accessible

IXPE (event-by event) Stokes Param. based Analysis Analysis

Stokes parameter is additive => flexible binning in sky coordinate

- X-ray imaging polarimetry for the first time
- Investigate B-field configuration of jet for Cen A
 - Axial vs. transverse, how B-field orientation evolves along the jet
 - ULX contamination excluded

Region	MDP ₉₉
Core	<7.0%
Jet	10.9%
Knot A+B	17.6%
Knot C	16.5%
Knot F	23.5%
Knot G	30.9%
ULX	14.8%

Includes effects of dilution by unpolarized diffuse emission

- X-ray imaging polarimetry for the first time
- Crab Nebula: past measurements (integrated)
 - OSO-8: 2.6&5.2 keV, PD=19%, PA=156 deg (Weisscopf +78)
 - PoGO+: >20 keV, PD=19%, PA=124 deg (Chauvin +17)
- We want to distinguish (possibly) different polarization in inner/outer nebulae by IXPE

Input polarization model: PD=19% (uniform) PA=124 deg (inner), 156 deg (outer)

30 ks obs, apply phase-cut (60% remained) to eliminate pulsar contribution

- Can distinguish inner- and outer-nebula polarizations with imaging capability of IXPE
- By applying phase-cut, we can recover the change of PD/PA by R. Yamamoto (Hiroshima)

- Turbulent B filed expected at SNR shock. Evolution of B turbulence is under debate
- Radio observation generally reveals radial/tangential field for young/old SNRs
- X-ray probes thin layer immediately behind the shock

Expected pol. directions for (A) anisotropic turbulence produced by shock compression (B) turbulence produced by anisotropic cascade

(Bykov +20)

• X-ray probes B-filed configuration behind the shock

Tycho SNR, pol properties by numerical simulation, 1 MS obs. with IXPE (A) anisotropic turbulence by shock compression

(B) turbulence produced by anisotropic cascade Can distinguish A (top) and B (bottom)

24/27

- Spectro-polarimetry probes space-time in the vicinity of BH
 - Photon scat. produces polarization; PD and PA depend on disk inclination and optical depth
 - In general, relativistic effect results in <u>energy-</u> <u>dependent</u> depolarization and change of PA

- Spectro-polarimetry probes space-time in the vicinity of BH
 - Photon scat. produces polarization; PD and PA depend on disk inclination and optical depth
 - In general, relativistic effect results in <u>energy-</u> <u>dependent</u> depolarization and change of PA

- Polarization is powerful probe to magnetic field and source geometry
- IXPE will be launched in late 2021 and make the spectro-imaging-polarimetry in
 - Japanese consortium contributes the mission in hardware and science
 - A few 10s sources are accessible for the first time (AGN, PWN, SNR, BHB, etc.)
 - Coordinated (polarimetric) obs. would provide vital information

Thank you for your Attention

- Bykov et al. 2020, ApJ 899, 142
- Chauvin et al. 2017, Scientific Report, 7816
- Dovciak et al. 2008, MNRAS 391, 32
- Novick 195, SSRv 18, 389
- Kislat et al. 2015, Astroparticle Physics 68, 45
- Vink & Zhou 2018, Galaxies 6, 46
- Weisskopf et al. 1978, ApJL 220, 117
- Weisskopf et al. 2009, Proc. SPIE 7732, 77320E
- Weisskopf 2018, Galaxies 6, 33

Backup Slides

- Modulation factor μ_{100} is relative amplitude of modulation curve for 100% polarized signal
- Minimum detectable polarization (*MDP*₉₉) is the minimum source polarization statistically distinguishable from 0% polarization

- We employ a Stokes Parameter based analysis to fully utilize imaging capability (cf. Kislat +15, Vink +18)
- Unlike PD/PA, Stokes parameters are additive and allow flexible binning in sky coordinate

- IXPE Maging X-Ray Polarimetry Stokes Param. based Analysis (Contd.)
- Event-by-event Stokes parameters:

$$i_k = 1, q_k = 2\cos 2\theta_k, u_k = 2\sin 2\theta_k$$

• Stokes params. of entire data:

$$I = \sum i_k = N$$
 , $Q = \sum q_k$, $U = \sum u_k$

• Normalized parameters, PD and PA:

$$\widehat{Q} = Q/I, \widehat{U} = U/I$$
 $p_r = \frac{1}{\mu_{100}} \sqrt{\widehat{Q}^2 + \widehat{U}^2}, \theta = \frac{1}{2} \tan^{-1} (\widehat{Q}/\widehat{U})$

• Errors:

$$(Q_{\rm err})^2 = \sum q_k^2 = \sum (2\cos 2\theta_k)^2$$
, $\widehat{Q}_{\rm err} = \frac{\sqrt{(Q_{\rm err})^2}}{I}$

(

$$\Pi = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}, \chi = \frac{1}{2} \tan^{-1} \left(\frac{U}{Q}\right)$$

 High polarization degree is expected ($\Pi_{\max} = \frac{p+1}{m+2/2} \sim 0.7$)

 Unique probe to B (and accelerated electrons)

produce synchrotron

radiation

Electrons + magnetic field

Polarization (1)

polarization vector \perp B direction

photon

- Hardware contribution
 - ✓ Mirror thermal shield (Nagoya Univ.)
 - ✓ Gas electron multiplier (RIKEN)
- Partially supported by JAXA's small project program
- Japanese contributors
 - <u>T. Tamagawa</u>, <u>T. Kitaguchi</u>, <u>T. Enoto</u> (RIKEN), <u>I. Mitsuishi</u>, <u>Y. Tawara</u> (Nagoya Univ.), <u>S. Gunji</u> (Yamagata Univ.), <u>T. Mizuno</u>, Y. Fukazawa, H. Takahashi (Hiroshima Univ.), <u>K. Hayashida</u> (Osaka Univ.), <u>W. Iwakiri</u> (Chuo Univ.) and students.

Names underlined are assigned as science collaborators.

- 2017年1月 NASA SMEX 採択
- 2018年6月25-28日 mission PDR (基本設計審査) 通過
- 2018年11月1日 KDP-C 通過
- 2019年6月24-28日 mission CDR (詳細設計審査) 通過
- 2020年3月末 FM 偏光計の較正試験完了、イタリアから米国へ輸送
- 2020年3月末 FM サーマルシールド製作完了、米国納品
- 2020年5月 Online Science Collaborator Meeting 開催
- NASA/MSFC は3-5月の間、大半の実験停止
- 2020年6月 望遠鏡単体試験@MSFC 完了
- FM 望遠鏡、FM偏光計 (3台分) 衛星への integration & test @Ball Aerospace
- FM 望遠鏡+FM偏光計 (1台分) end-to-end 試験@MSFC
- 2021年後半 打ち上げ

天文学会@筑波大(Mar. 18. 2020)

