連星中性子星への進化における超新星の役割 (Supernovae from the NS/WD formation boundary)

Keiichi Maeda Kyoto University 第12回光赤外線天文学大学間連携ワークショップ(online) 2021.11.26

The Seimei SN/Transient Prog.

Some numbers		© Tanaka		* Numbe	14 - , -16.5 -	
Distance (Mpc)	Volume (Mpc³)	# of galaxies	# of SNe (yr-1)	mag (abs mag -15 mag)	mag (abs mag -13 mag)	12 0 12 0 0 Days s
10	4 x 10³	40	0.4	15.0	17.0	
30	1 x 10 ⁵	10 ³	10	17.4	19.4	~ 5
50	5 x 10 ⁵	5 x 10 ³	50	18.5	20.5	
70	1 x 10 ⁶	1 x 10 ⁴	100	19.2	21.2	~ 5
100	4 x 10 ⁶	4 x 10 ⁴	400	20.0	22.0	
200	3 x 10 ⁷	3 x 10 ⁵	3,000	21.5	23.5	
500	5 x 10 ⁸	5 x 10 ⁶	50,000	23.5	25.5	

There are ~ 50 SNe / yr for which it can be observed spectroscopically in the infant phase (~ 3-4 mag below the peak). Telescope time and ToO flexibility can be practically more important than the depth (no need to go deeper than the survey). One key project: SNe leaving double NS systems.

Core-collapse Supernovae (CCSNe) White Dwarf Brown Dwarf Neutron Star / Black Hole Supernova Explosion CCSN Mass Loss **Gravitational Collapse** $M < 0.08 M_{\odot} \cdots 0.46 M_{\odot} \cdots 8 M_{\odot} \cdots 10 M_{\odot} < M$ H He He C+0 XNer He He H C+0 Si C+OO+Ne+Mg Fe Heavy Elements 7 ISM

Neutron stars formed behind CCSNe

NSs are formed at SNe (or SNe are triggered by NS formation).

NS diversities: Relation to properties of SNe?

The NS-SNR sample may be biased.

What determines the properties of a NS at birth? Relation to the properties of SNe (and then progenitor)?

The best we know: SN 1054=Crab

The best observed NS. Progenitor and SN?

Electron-capture SN? CSM Composition SN Nucleosynthesis Historical light curve (e.g., Tominaga+ 13)

Subaru Telescope, National Astronomical Observatory of Japan Copyright © 2007 National Astronomical Observatory of Japan. All rights reserved.

Figure of Supernova Remnant: Crab Nebula (Messier 1)

Suprime-Cam (V, NB497, B) March 12, 2007

Electron capture SNe

а

SN II @ 9.6 Mpc. Very early discovery by K. Itagaki. Intensive follow-up by LCO network. Unfortunately, Seimei was not ready.

Hiramatsu+, 2021, Nature Astronomy

Hiramatsu+, 2021, Nature Astronomy

Electron capture check list

The "real-time" counterpart of the Crab.

ECSN	Progenitor			Explosion		
Candidate	Identification	CSM	Chemical Composition	Energy	Light Curve	Nucleosynthesis
SN 2018zd	√?	\checkmark	\checkmark	√?	\checkmark	\checkmark
SN 1054 (Crab)	-	√?	\checkmark	\checkmark	√?	\checkmark
ILRT	$\checkmark?$	\checkmark	?	×	×	?
Low-Lum. II-P	×	?	×	√?	\checkmark	×
IIn-P	?	\checkmark	?	√?	\checkmark	√?

HST SWIFT+ gound spectroscopy < a few days of < a few days. the explosion.

Deep spectroscopy at ~year (faint, Keck, etc).

Thanks to very-early discovery and intensive follow-up observations, for a (rare) very nearby and faint SN.

Ultra-stripped envelope SNe (USSNe)

2nd SN toward the formation of compact binary NSs. Close orbit: C+O or He star. No binary disruption: low mass ejecta (< $0.5M_{\odot}$). $\Rightarrow <~ 2 M_{\odot}$ He or C+O star. \Rightarrow corresponding to $M_{ZAMS} < 11$ or $12 M_{\odot}$.

⇒ Low-E + Iow M(⁵⁶Ni) (e.g., Suwa+ 2015).

Prediction: "Faint" and "Fast" transients (e.g., Tauris+ 13, 15; Moriya+ 17).

Note: low mass SNe \supset USSNe, not =

- A low-mas He/C+O SN can arise from the following configurations:
 - A. a low-mass SN leaving short-period double NSs.
 - B. a low-mass SN leaving long-period double NSs.
 - C. a low-mass SN w/ a massive star companion.
 - Genuine USSN (toward DCNS binary)= case A.
- It is still important to find low-mass SNe and their nature in general:
 - Includes USSNe anyway.
 - The SN properties should be more like the same.
 - Rate in the stellar evolution context.

Ultra-stripped envelope SNe (USSNe)

Electron capture or Fe CCSNe near the white dwarf – SN boundary Taur(SN properties are probably the same within this mass range).

Expected Properties from the low-mass <u>He/C+O star explosion → ra</u>pid & faint

Low-mass CCSN lb/c: He 1.5 M_{\odot} (C+O 1.45 M_{\odot}) $\leftarrow M_{ms} \sim 10 M_{\odot}$ The "least" massive star to explode as a CCSN. Possible pathway to binary NSs.

"Normal" SNe lb/c: He 4 M_{\odot} (C+O 2.5 M_{\odot}) \leftarrow M_{ms} ~ 15M_{\odot}

De+ 18, Science

Ultra-SESN candidate iPTF14gqr

Rapid light curve, with spectral signature of a C+O star explosion (= The USSN expectation).

First peak in the LC: Dense CSM ⇒massive star origin (=USSN).

Emerging link between USSN candidates (or a low-mass SNe) and Ca-rich transients

iPTF14qgr is a variant of enigmatic "Ca-rich transients"

Ca-rich Transients (rapid & faint)

Kawabata, KM+ 10, Nature

2005cZ (Kawabata+ 10) & 2005E (Perets+ 10) SN Ib, but later strong [Ca II], not [O I]. Faint and rapid. First suggestions: Low-mass He/C+O star CCSN, or WD explosion?

First reports:

"Ca-rich"

Ca-rich transients = old populations?

TF foiuv

E

However..

A small fraction are found in young environment. If they are CCSNe, it has several implications.

E 🔶

PTF11bij

Kasliwal+ 12

Nakaoka, KM, Yamanaka+, 2021: One of the first results from Seimei A new candidate of an Ultra-SESN?

Emerging link between USSN candidates (or a low-mass SNe) and Ca-rich transients

The difference disappears (or reduces) in the later epochs. They all evolved to the (enigmatic) "Carich transients" (c.f., Kawabata, KM+ 2010).

A need for more candidates: Consistent with the USSN expectation? (e.g., mass diversity)

Did SN 2019ehk leave NSs with close orbit?

- Optical observations would not discriminate the following scenarios (genuine USSN = case A):
 - A. a low-mass SN leaving short-period double NSs.
 - B. a low-mass SN leaving long-period double NSs.
 - C. a low-mass SN w/ a massive star companion.
- Go for radio.

SN 2019ehk = either case B or C (unfortunately not leading to the NS merger in the future). Note: it is important to explore a census of "low-mass SNe".

Search for USSNe: Requirements

- High-cadence survey.
 - They are rapid.
- Quick and intensive follow-up observations.
 They are faint.
- Multi-wavelength helps.
 - The variant may look similar in the optical.

Search for USSNe with Seimei/Kanata

Survey capability already sufficient; Follow-up key.

USSN rate ~ 1 / yr within 60 Mpc (otherwise ≠ DNS formation)

Seimei telescope for spectra with Rapid & intensive SN follow-up program Kools-IFU (present): limit: 18 (cons)-19 (best) mag TriCCS: Imaging available, spec to come.

Next OISTER should help → New transient sky.

New instruments becoming available. Tomo-e, TriCCS, ... e.g., TriCCS may help establish the NS population by the sub-sec observations. \Rightarrow SN-NS synergy.

Multi-wavelength NIR, radio, ...

⇒ SN full characterization. Identifying USSNe.

Summary

- Core-collapse SNe (CCSNe) from the lowest mass boundary.
 - A single star: Electron-capture SNe.
 - A key in understanding stellar evolution and SN explosion mechanism.
 - SN 2018zd as the strongest candidate.
 - A "real-time" twin of the crab?
 - In a binary system: Ultra-stripped SNe and calcium-rich transients.
 - A possible pathway toward compact binary neutron star systems.
 - SN 2019ehk as a new candidate; a companion is not a NS?
 - The SN properties anyway shared with the USSNe.
 - A new link to Ca-rich transients.
- Search for SNe leaving double NS systems.
 - Doable and promising project for next OISTER.