J-GEMの重力波観測ランO4に おける電磁波フォローアップ

2023/2/28-3/1 第13回光赤外線天文学大学間連携ワークショップ

田田

真人(東京工業大学)、J-GEM Collaboration

重力波天体の電磁波対応天体

→ 噴出物質から電磁波が放射(キロノバ)

中性子星連星またはブラックホール-中性子星連星の合体により重力波を放出

NASA/CXC/M.Weiss

電磁波フォローアップ観測から連星合体時の物理過程を調査 キロノバにおける r-process の重元素合成過程を調べる

GW170817

- ・LIGO, Virgoにより重力波GW170817が検出 ・NGC 4993の近傍で突発天体が検出 → 重力波電磁波対応天体と同定
- ・検出された波長と時刻
- ・ガンマ線:2秒後
- ·X線:9日後
- ·可視光:11時間後
- · 電波: 16日後

明らかな電磁波対応天体が 検出された唯一の例

重力波到来領域での電磁波対応天体の探索

Lipunov+ 2017

・世界中の望遠鏡群を用いて重力波の電磁波対応天体の同定を目指す

・重力波の到来領域の大きな不定性により、領域内には多数の星や銀河が存在

Kagoshima U

Yamaguchi Kagoshima 1m 32m, 34m radio Yamaguchi U

MITSUME Okayama Tokyo Tech

0.5m

HinOTORI

Hiroshima U

).91m

NAO.

Main features: 20 deg² optical imaging w/1m 1.45 deg² NIR imaging w/1.8m opt-NIR spectroscopy w/1-8m opt-NIR polarimetry

wide & deep imaging w/8m

 $1.8m, 1.45 \text{ deg}^2$

Osaka U

21機関から89名が参加

04から観測参加 J-GEM Japanese collaboration for Gravitational-wave Electro-Magnetic follow-up

J-GEM電磁波対応天体探査:2つの戦略

候補銀河の観測

通常視野の望遠鏡: FoV < 1 deg2

重力波検出器の高確率天域・距離にある GLADE銀河カタログの明るい銀河多数を観測

Kanata	OAO WFC	B&C
IRSF	MITSuME	SaCRA
Nayuta	Akeno/Okayama	Seimei

高確率天域の掃天観測

広視野望遠鏡: FoV > 1 deg2

Subaru/HSC Kiso/Tomo-e MOA-II

重力波検出器の確率マップで 高確率天域を無バイアス観測 →カタログ未記載の銀河もカバー

候補銀河観測:情報一元化による観測効率化

Third Observing Run (03)

03において56の重力波トリガー

				• • • • • •
٩R	Comments			
per 446.44 ears				
per .5448e+17 ears				

https://gracedb.ligo.org/superevents/public/O3/

O3におけるJ-GEMのフォローアップ

	Туре	Distance (Mpc)	localization (deg²)	Observation (Gal. number)	Cumulative Prob (%)	GCN
GW190408_181802	BBH	1550	387	1	0.0042	24064
GW190412	BBH	740	156	157	0.62	24113, 24350
GW190425	BNS	160	7461	170	1.9	24192, 24230, 24328
GW190426_190642	BBH	370	1131	64	2.0	24299
S190510g	Terrestrial	277±92	1166	15	1.3	24464
GW190814	NSBH	240	23	24	9.8	25377, 25389
GW190930_133541	BBH	760	24220	18	0.27	25920, 25941
S191205ah	Terrestrial	385±164	6378	7	0.0	26381
S191213g	Terrestrial	195±59	4480	45	1.5	26477
S200114f	Terrestrial	—	403	42	—	26803
S200213t	Terrestrial	201±80	2326	74	5.0	27066

23の重力波イベントに対してフォローアップ観測を実施

03での得られた検出限界とモデル曲線

重力波源のモデル曲線と検出限界を比較

重力波源の距離と重力波不定領域サイズ

重力波源領域に存在する銀河の個数N

$$N = 0.00235 \times \frac{4}{3}\pi d^3 \frac{\Delta\Omega}{4\pi}$$

Gehrels+ 2016

d: 天体までの距離 ΔΩ: 重力波方向の不定性

観測可能な銀河数を200個以下とすると 距離 100Mpc、方向不定性 500deg2

04にむけて

2023年5月24日に04開始 1ヶ月前からエンジニアリングランを実施

O4への取り組み①:せいめい/TriCCS

せいめい望遠鏡/TriCCS

- ・可視光3バンド同時撮像 (g, r, i/z)
- ・候補銀河の即時観測・解析
 - → 京大・TriCCSチームと準備中

04への取り組み②: PRIME 1.8m 望遠鏡

PRIME望遠鏡の特徴

- ・近赤外帯域の撮像観測
- FoV: 1.45 deg2
- ・南アフリカ → 南天

- ・画像差分から突発天体を検出
- HOTPANTSの差分解析 1250 1000 (PSFをモデルフィットから推定) 750 500 → 明るい星まわりで引き残り 250
- ZOGYの差分解析 (PSFを実際の点源から推定) → 星まわりの引き残りはない

Image Serverの差分解析をZOGYに より実施

04への取り組み③:Image Serverの改良

HOTPANTS

1500

ZOGY

IITSuME GRB.fits PS1 noGRB.fits

まとめ

- ・J-GEMは2つの戦略で突発天体を探査する
- ・Plannerにて重力波到来領域内の銀河リストを取得し、観測や検出情報を統合する
- ・Image Serverにて取得された銀河画像から突発天体を探す
- ·O3には23の重力波イベントに対してフォローアップを実施した
- おいて対応天体の検出が期待できる
- ・04にむけて準備を進めている

・J-GEMのフォローアップでは距離100Mpc、方向不定性500deg2以下の重力波イベントに

Light curves in Optical and NIR

Utsumi+ 2017