広視野 CMOS カメラ Tomo-e Gozen のための短時間の突発天体検出パイプライン の開発

有馬 宣明 (東京大学)

共同研究者

笹岡大雅, 土居守, 酒向重行, 新納悠 (東京大学), 冨永望, 大澤亮 (国立天文台), 田中雅臣 (東北大学), Michael Richmond (Rochester Institute of Technology), and Tomo-e Gozen collaboration

第13回光赤外線天文学大学間連携ワークショップ (2023年2月28日~3月1日 @名古屋大学)

- イントロダクション
 - ► 可視光突発天体のphase space
 - ▶ 短時間で起こる突発天体現象
 - ▶ Tomo-eで切り開く秒スケールの突発天体探査
- ・ 秒スケール突発天体検出パイプライン TomoePipe の開発
 - 3次元FITS(動画データ)を解析
 - PSFで重み付けをした天体検出
 - ▶ point sourceに絞る天体パラメータの導入
 - Tomo-eの実データへの適用
 - ▶ 動画データ
 - ▶ 差分画像(by 笹岡)
- まとめ & 今後の展望

可視光突発天体のphase space

- タイムスケール vs. ピーク光度(絶対等級)
 - ▶ 様々な種族のexplosive transients

Kasliwal (2011)

Phase space of transients

可視光突発天体のphase space

- タイムスケール vs. ピーク光度(絶対等級)
 - 様々な種族のexplosive transients ►

- Pan-STARRS: https://outerspace.stsci.edu/display/PANSTARRS/
 - ASAS-SN: https://users.obs.carnegiescience.edu/tholoien/research/asas-sn.html
 - ATLAS: https://www.fallingstar.com/home.php

可視光突発天体のphase space

- タイムスケール vs. ピーク光度(絶対等級)
 - 様々な種族のexplosive transients

Phase space of transients

Rest et al. (2018)

短時間で起こる突発天体現象

- 銀河系内
 - ▶ 主にM型星の高速フレア (sec ~ min) e.g., Kowalski et al. (2016), Aizawa et al. (2022)
- extragalactic
 - ► GRBの可視光即時放射
 - long-GRB (t >= 2s): Racusin et al. (2008)
 - short-GRB (t < 2s): 未だ未検出
 - ► FRBの可視光成分 (理論モデル予測) 4
 e.g., Beloborodov (2020): magnetar giant flare →
 model by the synchrotron maser mechanism 4
 - 電波/可視同時観測 => 未だ未検出
 e.g., Hardy et al. 2017, Niino et al. 2022

これまでの短時間の可視光突発天体探査

•	← CCDs →				
	Berger et al. 2013	Andreoni et al. 2020	Wevers et al. 2018	Richmond et al. 2020	
装置 (口径 / FOV)	Pan-STARRS1 1.8 m / 7 deg²	DECam 4 m / 2.2 deg²	Gaia satellite 0.7 m² / 0.6 deg²	Tomo-e PM 1.05 m / 1.9 deg ²	
タイムスケール	30 min	1.2 min	15 sec	1.5 - 11.5 sec	
深さ (限界等級)	~ 22.5 mag	~ 23 mag	~ 20.5 mag	~ 15.6 mag	
発見天体	9 stellar flares	9 stellar flares	4 stellar flares	No candidates	
イベントレート Rtrans (deg ⁻² d ⁻¹)	≲ 0.12	≲ 1.6	NOT derived	≲ 1.46	

(目的) Tomo-e Gozen 広視野動画観測による秒スケールの突発天体探査の実施 => 動画データ解析パイプラインの開発 (本発表)

本解析パイプラインの概要

• 解析パイプラインの流れ

- 上記の一連のプロセスを純Pythonで開発 (TomoePipe)
 - ► ソース検出 & 測光: SEP^{*1} (SExtractorのコア機能のPython wrapper)
 - ▶ PSF モデリング: PythonPhot^{*2} (DAOPHOTのコア機能の翻訳版)
 - ► その他: astropy, numpy, pandas, など

^{*1} Barbary 2016, JOSS, 1, 58 ^{*2} Jones et al. 2015, ascl:1501.010

Stack画像 & "segmap"の作成

PSF モデリング

秒スケールの突発天体の検出

- segmapを参照しフレーム画像のみで検出された天体を抽出
 - ▶ segmapにある天体
 => 星系列の定義に使用
 - ▶ segmapに無い天体
 (= stack画像で非検出)
 => 候補天体リストへ

突発天体候補の選択 (星系列)

突発天体候補の選択 (星系列)

- cpeak vs. peak/√npix プロットで選択
 - => 以降 CP-P diagram と呼ぶ

突発天体候補の選択 (星系列)

cpeak vs. peak/√npix プロットで選択

=> 以降 CP-P diagram と呼ぶ

突発天体候補の選択 (楕円率)

TomoePipeのまとめ

動画データへの適用

- データ:地球影領域の動画観測(1フレーム/秒、120フレーム/動画)
 - ▶ 2019/11 2020/03 (28 夜) にかけての計約54時間のデータ
- Gold candidate 392天体の目視チェック結果
 - ▶ 既知の地球接近小惑星NEOCP JNS043の検出にも成功している (下図)

差分画像への適用

- 毎晩行われているTomo-eの全天サーベイデータ(スタック画像)
 - 差分解析による突発天体検出が行われている(transient パイプライン)
 - ・ 差分画像(Diff)に TomoePipe の手法を導入(by 東大、笹岡くん)
 - CP-P diagramによってtransient候補の絞り込みができないか検証 (Tomo-e自動アラートへ向けて誤検出を減らしたい)
- テストデータ
 - Transient Name Server (TNS) に登録されている天体のうち、
 現行のパイプラインでS/N > 5で検出されている 235 枚の画像を使用

差分画像への適用(結果)

- Diffに写る突発天体をNew画像の星系列領域に探す
 - 星系列をべき関数でフィット
 $y = ax^b$
- Diff画像上のTNS天体の多くは 星系列の上に乗る (右図)
 - CP-P diagramが差分画像にも 適用できることがわかった

• TNS天体の検出成功率および誤検出の割合

手法	検出成功数	検出成功率	成功した画像の中の 誤検出(median)
従来	235	100%(基準)	89
今回	139	59%	4

発表のまとめ&今後の展望

- Tomo-eで切り開く秒スケールの突発天体探査のための動画データ解析 パイプライン TomoePipe を開発した。
 - ▶ PSFで重み付けをした天体検出
 - ▶ point sourceに候補天体を絞るCP-P diagramの導入
- Tomo-e実データに適用した結果、
 - ▶ 動画データからは既知のNEO (point source) が検出された
 - ▶ 差分画像データにも適用できることが確かめられた
- 今後の展望
 - 星系列領域をseeing(+α)依存の関数で定義する方法の検討
 - 動画データに対して差分画像 —> TomoePipe を使った解析の実施
 - 将来的にはサーベイデータから自動即時解析まで行えるように