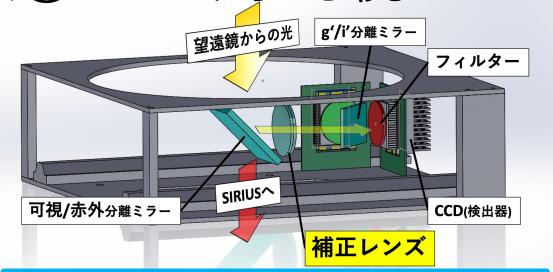
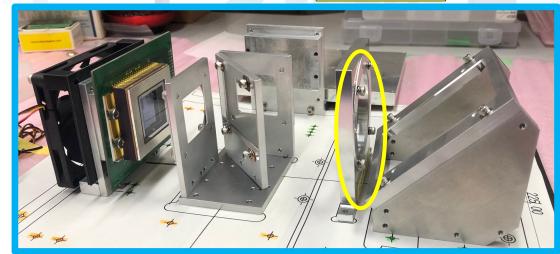
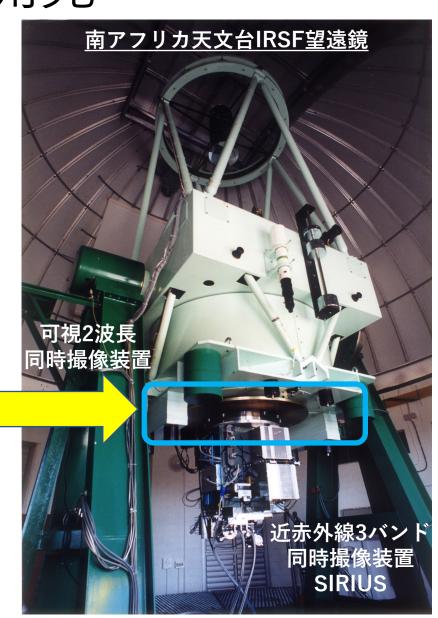
高精度測定装置を用いた レンズの球面形状・面精度測定手法の習得

(短期滞在実習プログラム報告)


鹿児島大学理工学研究科 M1 武内友希 OISTER WS @東京工業大学


「高精度測定装置を用いたレンズの球面形状・面精度測定手法の習得」

- ・導入① IRSF用 可視カメラの開発
- ・導入② 可視カメラに用いるレンズの評価
- ・導入③ レンズ測定手法
- ・導入4 短期滞在実習の目的

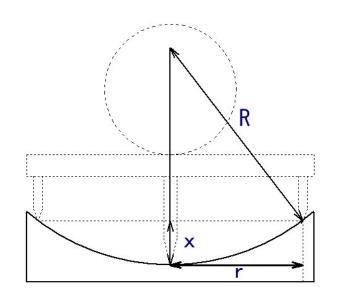

- ・実習報告① NH6による測定
- ・実習報告② 測定における工夫点
- 実習報告③ 測定結果
- ・実習報告④ 実習で学んだこと・まとめ

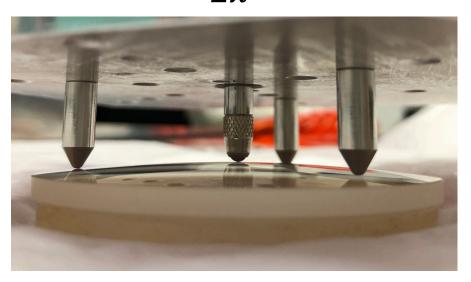
導入① IRSF用 可視カメラの開発

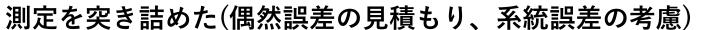
- ○鹿児島大学では、新たなIRSF用可視カメラの開発を始めた。 →現在機械設計まで完了しており、**24年9月ファーストライト予定**
- ○部品が設計値通りにできているか、装置で使えるか評価が必要

導入②可視カメラに用いるレンズの評価

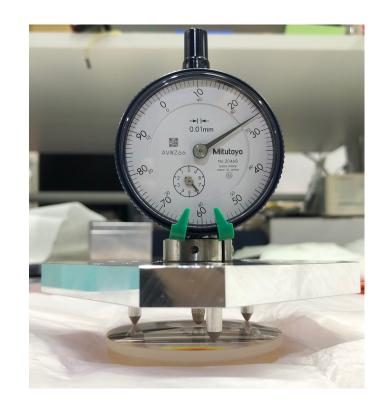
<自作球面計による曲率半径>


$$x = R - \sqrt{R^2 - r^2}$$


$$x = R - \sqrt{R^2 - r^2} \quad \leftrightarrow \quad R = \frac{x^2 + r^2}{2x}$$


x … 球面計による基準面からの高さ

R … 曲率半径


r… 球面計による基準面の半径

しかし、ひとつの手法だけでは正しく評価できているか心配

導入③レンズ測定手法

	球面計	非接触3次元測定器	ニュートンリング
測定	基準面からの 高さの差	範囲内の高さの情報 (XYZデータ400点)	ニュートン縞の間隔
原理	$R = \frac{x^2 + r^2}{2x}$	球面の式への フィッティング	縞の間隔→曲率半径
概念図	R	80.0 79.8 79.6 79.4 79.2 79.0 2 79.0 X -5 0 -8	r d a

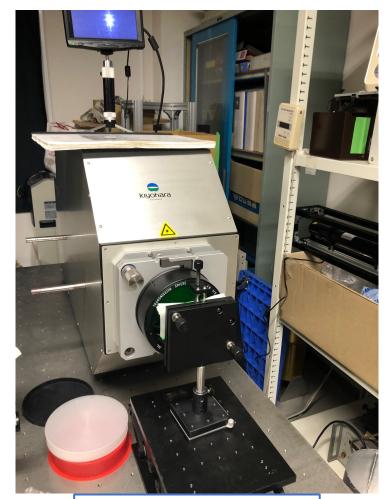
名古屋大学に非接触3次元測定器があることを知る

導入④ 短期滞在実習の目的

- レンズをより高精度に測定できる装置や測定について教わる
- →非接触3次元測定装置(三鷹光器NH6)、フィゾー干渉計(清原光学)
- →自身のレベルアップ、研究室としての蓄積
- →IRSF用 可視カメラの開発の光学試験へ活かす

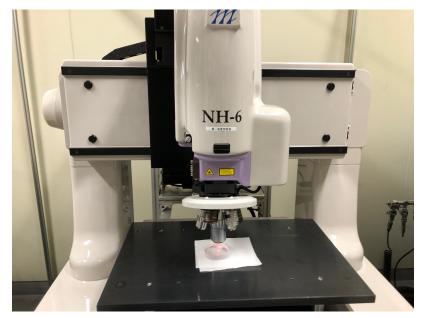
• 曲率半径測定装置としての球面計の確認

短期滞在実習プログラムを利用し、名古屋大学Uir研究室にて2023.6.18-6.23の1週間、指導をうける機会をいただいた

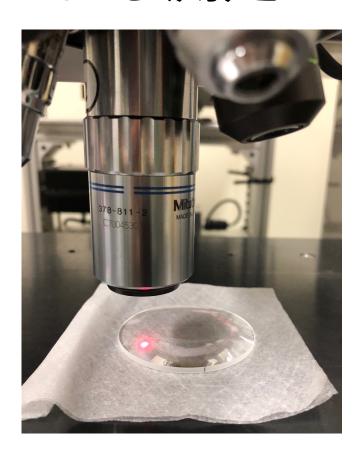

「高精度測定装置を用いたレンズの球面形状・面精度測定手法の習得」

- ・導入① IRSF用 可視カメラの開発
- ・導入② 可視カメラに用いるレンズの評価
- ・導入③レンズ測定手法
- ・導入4 短期滞在実習の目的
- ・実習報告① NH6による測定
- ・実習報告② 測定における工夫点
- 実習報告③ 測定結果
- ・実習報告④ 実習で学んだこと・まとめ

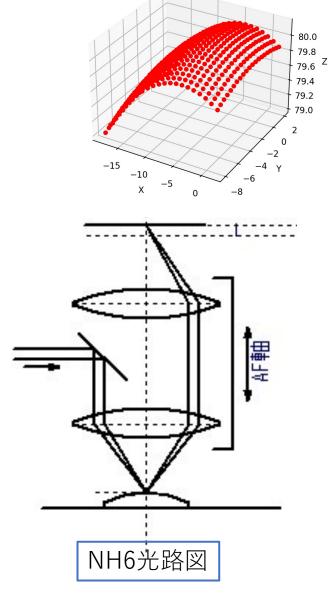
短期滞在実習報告

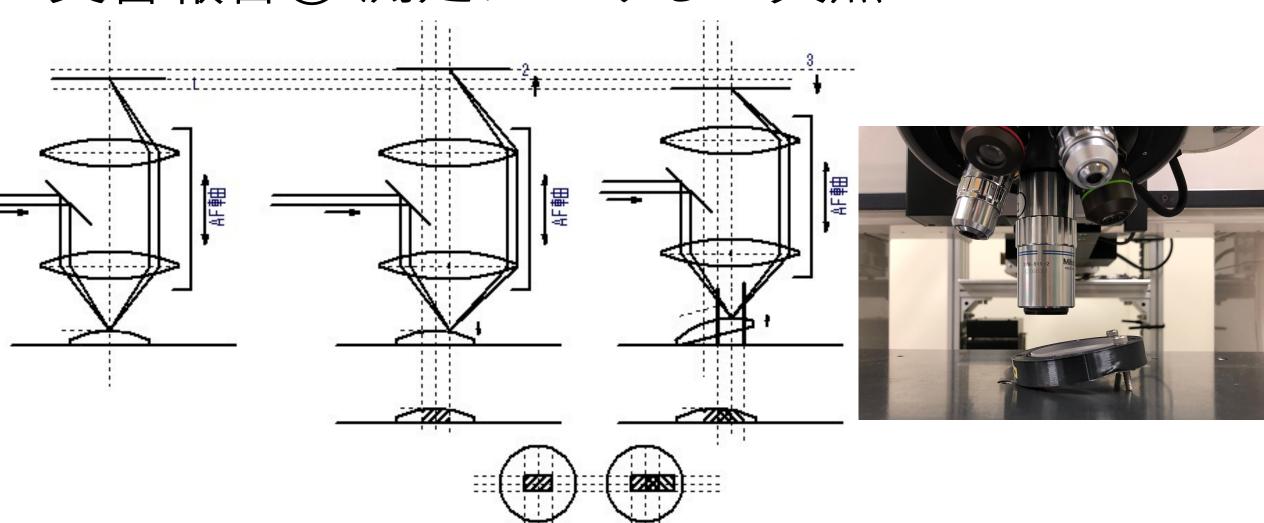


NH6(非接触3次元測定装置)

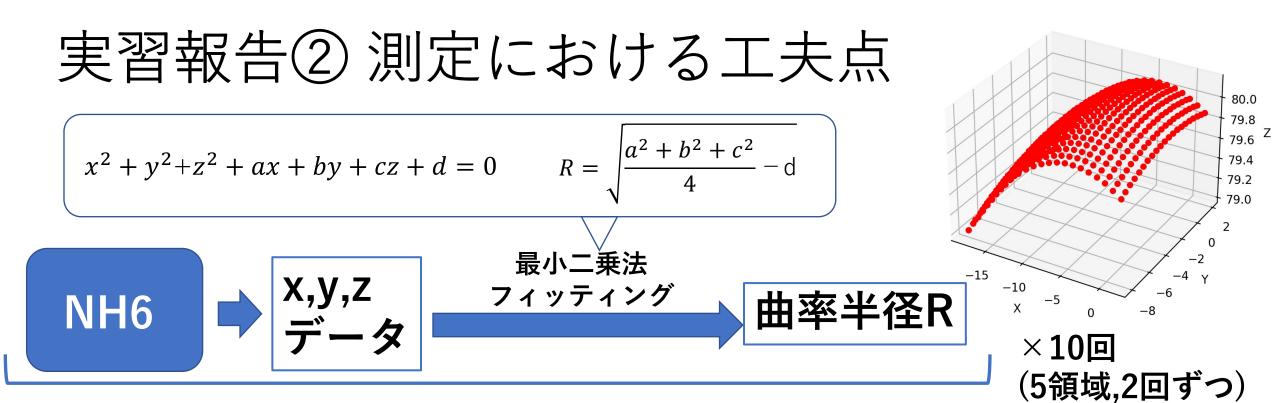


フィゾー干渉計


実習報告① NH6による測定



NH6による測定



レンズ4枚、5つの曲率半径を用いて測定を行った 各点における高さをとり、XYZの3次元データを得る

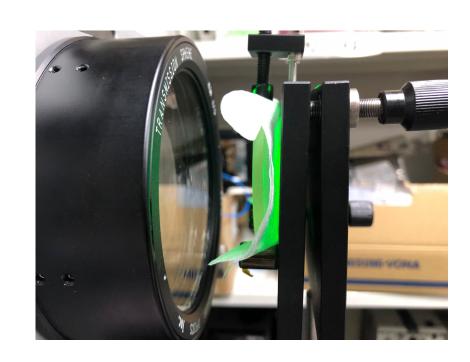
実習報告②測定における工夫点

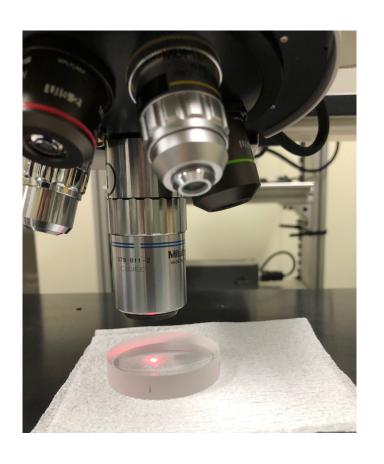
装置に対してレンズを傾ける→より広い範囲での高さをとる 治具を自作、5つの傾きでレンズの測定を行なった。

曲率半径R 10点 土不確かさ

NH6で得られたxyzのデータから、最小二乗法のフィッティングにより球の半径を求める。

実習報告③ 測定結果

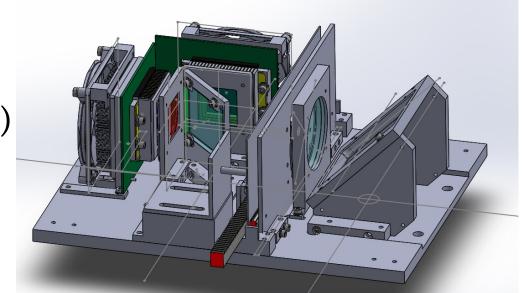

※メーカー焦点距離公差2%


	公称值※ (mm)	NH6 実測値(mm) ±不確かさ 3 σ	球面計 実測値(mm) 生不確かさ 3 σ	球面計 系統誤差 (mm)
レンズ(1)	-64.60	-64.62 ± 0.03	-67.57 ± 0.05	
レンズ②	103.36	$\textbf{103.4} \pm \textbf{0.1}$	101.48 ± 0.09	
レンズ③	258.40	258.40 ± 0.06	$\textbf{258.0} \pm \textbf{0.4}$	
IRSFレンズ①	259.5	259.9 ± 0.2	260.2 ± 0.2	259.2~262.0
IRSFレンズ②	-1300	-1297.9 ± 0.9	$\textbf{-1280} \pm 3$	-1270~-1300

- ・反射防止コートのあり・なしで測定の精度が大きく変わった
- ・公称値と比較すると、NH6のほうが近くなっている印象
- ・球面計との比較では、系統誤差の範囲内で合致している

短期滞在実習まとめ

- 触ったことのない大きな装置を間近で触れ、自分で動かすこと による理解の向上
- ・別の大学の実験室の雰囲気
- ・光学実験の際の心構え


まとめ

・短期滞在実習によって名古屋大学Uir研で1週間ご指導いただき、面形状・面精度の測定を行った

- ・装置を実際に触って教わることによる理解やスキルの向上
- →非接触3次元測定装置(三鷹光器NH6)
- →フィゾー干渉計(清原光学)

• IRSF用 可視カメラ(24年9月ファーストライト) の光学試験を進めていく

