広視野紫外線観測衛星 『うみつばめ』搭載望遠鏡の開発

上嶋茂諒, 福田美実, 早津俊祐, 関響, 萩尾陽菜, 久保元由樹, 小林大輝, 小林寛之, 天木祐希, 安田萌恵, 大坪恵人, 荒井湧介, 尾関優作, 田代克樹, 吉村大樹, 吉田英生, 川口雄生, 斎藤遼, 正木青空, 渡邉奎, 庭野聖史, 高橋一郎, 笹田真人(科学大) 江野口章人, 白旗麻衣, 武山芸英(株式会社ジェネシア), うみつばめ開発チーム

Outline

◆広視野紫外線観測衛星「うみつばめ」とは
◆紫外線望遠鏡の諸元
◆紫外線観測実現に対する課題
◆課題への対処
◆センサ特性

◆現在の状況 / EM振動試験の様子 ◆サマリ・Future work

うみつばめ衛星とは

史上初の広視野紫外線サーベイ観測を実現する超小型人工衛星

ターゲットとする天体現象

超新星ショックブレイクアウト

連星中性子星合体

etc...

50kg class micro-satellite

紫外線望遠鏡

パラメータ	値
口径 / 焦点距離	Φ80 / 180 [mm](F=2.25)
視野	50 [deg^2]
センサ	裹面照射型CMOS
画素	2048 × 2048 [pix]
ピクセルスケール	12.6 arcsec / pix
波長	250~300nm
レンズ材質	CaF2, 溶融石英計7枚

熱設計に対する課題(1/2)

搭載CMOSの暗電流

- ・ノイズの低減
 - ・ 暗電流ノイズが支配的
 - ・センサ温度<-20℃(観測中)

CMOS温度の軌道上予測

センサ性能

限界等級 20 magAB (5σ)

8

熱設計に対する課題(2/2)

・温度収差によるPSF変化<1pix

- 観測中
- 一番外側の対物レンズの温度変化 <±1℃
- 軌道上で焦点合わせが行える

構造設計に対する課題

まとめ・今後の予定

◆世界初の広視野紫外線観測衛星「うみつばめ」を開発中

◆熱的な課題に対処し20magABでの観測が可能な望遠鏡を開発
 ◆ヒータによるレンズの加熱
 ◆可動ステージによる焦点調整
 ◆ラジエータでの冷却

◆可動ステージ部分の構造改修を行っている ◆来年3月ごろFM完成予定

Appendix

Expected Event rate

Targets	contents		
Core Collapse SNe			
Shock Breakout @Surface	1 evt/yr (0.1d exp × 200deg ² within 100 Mpc)		
Shock Breakout @Wind	12 evt/yr (1d exp \times 200deg ² within 200 Mpc)		
NS-NS merger			
Assuming GW170817	0.4 - 16 evt/yr (1mag dimmer than the model within 100Mpc)		
Without UV from Jet	0.1 - 4 evt/yr (2mag dimmer than the model within 100Mpc)		

■In addition, type-Ia SNe, novae, stellar flares, tidal disruption events, etc will be detected.

- •目的
 - ・ 接触熱抵抗の実測
- 試験
 - •スペースチャンバに衛星を 入れ、軌道上での温度変化 を再現した温度試験を行う

シュラウドとの輻射コンダクタンス

シュラウドとの輻射コンダクタンス

軌道上熱環境

外部 熱入力

	最良	年間平均	最悪	説明
<i>β</i> 角	21.4° (6~7月)	29°	36.7° (2月)	β角が大きいほど日陰率が低下 ※ H3軌道条件未確定、Falcon9で計算
地球赤外放射 [W/mm ²]	2.16×10 ⁻⁴	2.37×10 ⁻⁴	2.58×10 ⁻⁴	衛星直下地点の緯度・季節・天候に依 存UVT開口部、ラジエータへの入熱
アルベド [W/mm²]	1.32×10 ⁻³ ×0.25 (夏至付近)	1.37×10 ⁻³ ×0.3	1.42×10 ⁻³ ×0.35 (冬至付近)	太陽との距離の季節変動、 衛星直下地点の緯度・季節・天候に依 存
			冬が最悪条件	日照中のUVT開口部への入熱
構体温度 (バルクMX) [℃]	20	25	30	熱設計目標値 30℃以上の場合バッテリーがオーバー ヒート
観測対象 (ra, dec)			天頂方向 (90, ーβ角)	UVTラジエータへの地赤入射 ToOの発生頻度は全天一様なので、最 悪条件で解析

The configuration of the Vibration Test

Basis of evaluation of vibration resistance

Calculate the RMS value of response acceleration when random vibration is applied

A normal distribution is assumed for the response acceleration, and the value of 3 sigma is adopted

23

Miles's equation: $\ddot{x} \approx \sqrt{\frac{\pi}{2}} f_n Q \cdot PSD_{\ddot{y}}(f_n)$ $PSD \text{ value at } f_n$ Resonant frequency Q value

Evaluation of vibration resistance(Lens)

From Miles's equation,
$$\ddot{x} \approx \sqrt{\frac{\pi}{2}} f_n Q \cdot PSD_{\ddot{y}}(f_n)$$

The maximum of vibration force to Lens = 492.0G Vibration resistance of the lens = 600G > 492G

The lens and barrel can withstand the vibration forces of the launch environment!

■コリメータから光を入射し、結像位置・ ステージ位置を変えながら撮影

■結像位置は、検出器中央と四隅の計 5点

■UVTの傾きで結像位置を調整

■Best focus付近(50µm間隔)

■各結像位置でRMS半径 vs ステージ位置をプロット ■2次関数でフィッティング

