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1.1 Mass-loss of interacting SN progenitors

SNe Il are supernovae that occur from

core-collapse of massive stars (>8MO)

> Strong hydrogen lines in spectra
(progenitor has a hydrogen envelope)

Many SN Il progenitors experience

intense mass-loss just before explosion

> Existence of CSM near the SN
» A diversity of mass-loss rates within SNe |
— more objects need to be investigated to

understand this diversity!
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1.1 Mass-loss of interacting SN progenitors
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1.2 The Tomo-e Gozen camera

Telescope Detector
1.05-m Schmidt telescope Tomo-e Gozen camera
@Kiso Observatory = > 84 CMOS sensors
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Instrument info

Field of view
i D

20 square degrees

Imaging speed
2 frames per second
‘ Data handling
@ 30 TB per night
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1.3 Surveys conducted with Tomo-e Gozen

A typical observing schedule would look like...

18 19 20 21 22 23 24 1 2 3 4 5 6
Time (hour)

é All-sky survey N ( High-cadence survey A
Cadence Q Depth Cadence Q Depth
1 day ~18 mag 30 min ~18 mag
@ Field coverage per day @ Field coverage per day
|J\|j ~13,000 square deg |'J\|j ~3,000 square deg
N N\ /
N N4
Transient pipeline | s Detection!
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2.1T SN 2024acn

* A Type |l supernova
» Narrow Ha line
> A helium line was seen as well

 Discovered January 13, 2024

> By the Tomo-e supernova team

> 17.57+0.11 mag An image take with riCCS (1/16)

+ Redshift z=0.031 M el g
» Distance ~ 130 Mpc M\'M | Ho
AW |
* The host is a small, faint galaxy T
» SDSS J111040.54+210626.3 o vl
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The earliest spectrum by KOOLS-IFU (1/15)



2.2 Light curves

* We obtained optical and NIR light curves
MITSUME @Akeno (g'RI)

WFGS2 @Nayuta (BVRI)

HONIR @Kanata (JHKSs)

TriCCS @Seimei (gri) -> to be added...
HOWPol @Kanata (BVRI) -> to be added...

VYV V VY

« Peak properties Koshi et al., in prep.
> Rise time ~ 10-30 days
» Peak magnitude ~ -19.5 mag

» Post-peak properties
» A gradual decline in optical (~0.01 mag/day)
» Possible rebrightening in Ks-band?




2.3 Spectra

« We have obtained 18

optical spectra

» KOOLS-IFU @Seimei

» HFOSC @Himalaya
Chandra Telescope

« Changein Ha and Hf

profiles

»> <34d: narrow, symmetric
» >50d: broad, asymmetric

Koshi et al., in prep.




3.1 Comparison with other CSM-interacting SNe

e Photometric evolution of 24acn is “slow” -> consistent with SNe IIn
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3.2 An asymmetric Ha profile

 The Ha line of SN 2024acn has an asymmetric profile

KISS15s SN 2019zrk
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3.2 Asymmetric Ha line profiles

* Where does the blueshifted component come from?

1. Attenuation by dust 2. Asymmetry of the CSM
e.g. Gall et al. (2014) e.g. Fransson et al. (2014)
The blueshifted line is a result of dust The blueshifted line is a result of a bulk of
off the line of sight of the observer matter moving towards the observer
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3.2 Asymmetric Ha line profiles

* Where does the blueshifted component come from?

3. A mixture of dust and asymmetric CSM
e.g. Kokubo et al. (2019)

The blueshifted line reflects matter
passing a region of rarified CSM
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3.3 Decomposing the Ha profile

We took a spectrum and decomposed
its Ha profile in three ways

1. A subtraction between two components
» Dust attenuation

2. A single blueshifted component

» A single bulk of matter moving towards the
observer

3. A sum of two components

» Different components coming from different
regions

Koshi et al., in prep.
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3.3 Decomposing the Ha profile

The two-component function and the subtracted function are
relatively well fit to the data

» Two-component function -> The peak

» Subtracted function -> A small bump at v~3500 km/s

The small bump is only clearly seen at this epoch

Koshi et al., in prep.
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3.3 Decomposing the Ha profile

* The blueshifted component appears from 50d

Koshi et al., in prep.




3.3 Decomposing the Ha profile

« Velocity shift of the blueshifted component changes with time
» -4200--3500 km/s: deceleration of the matter emitting the component
* Velocity width declines for both components

Amplitude ratio of the two components remains roughly constant
» Originating from the same emission mechanism

Koshi et al., in prep.
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3.4 Application to the Hp profile

* The model fit to the Ha line can roughly reproduce the Hp line
> A possible discrepancy blueward of the profile (P-Cygni profile?)

Koshi et al., in prep.
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3.5 Investigating dust formation

* NIR photometry (from HONIR) supports the existence of dust
> A single blackbody cannot explain the optical + NIR magnitudes

Koshi et al., in prep.

17



4.7 Next steps

L[S .
/i?' Observation OSpectraI evolution
« Can brightening in the NIR be e Comparison of the Haand Hf3
confirmed? line (in progress)

« Examination of the helium lines
> Late-phase He I: P-Cygni

difficult... » Early-phase He II: asymmetric
» Current photometry is consistent

with the host galaxy

* Optical follow-up may be

Koshi et al., in prep.

g r i
Images with TriCCS on 11/13
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4.2 Conclusions

* SN 2024acn is a SN lIn that is characterized by...

> A slowly evolving light curve
> Asymmetry in the late phase Ha (and Hp) profile

* This would imply that...

> The progenitor of 24acn experienced severe mass-loss, longer than most
SNe
» Different components are thought to originate from different regions

* More transients are expected to be discovered by Tomo-e Gozen
» Observations with OISTER will maximize the values of these discoveries!
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