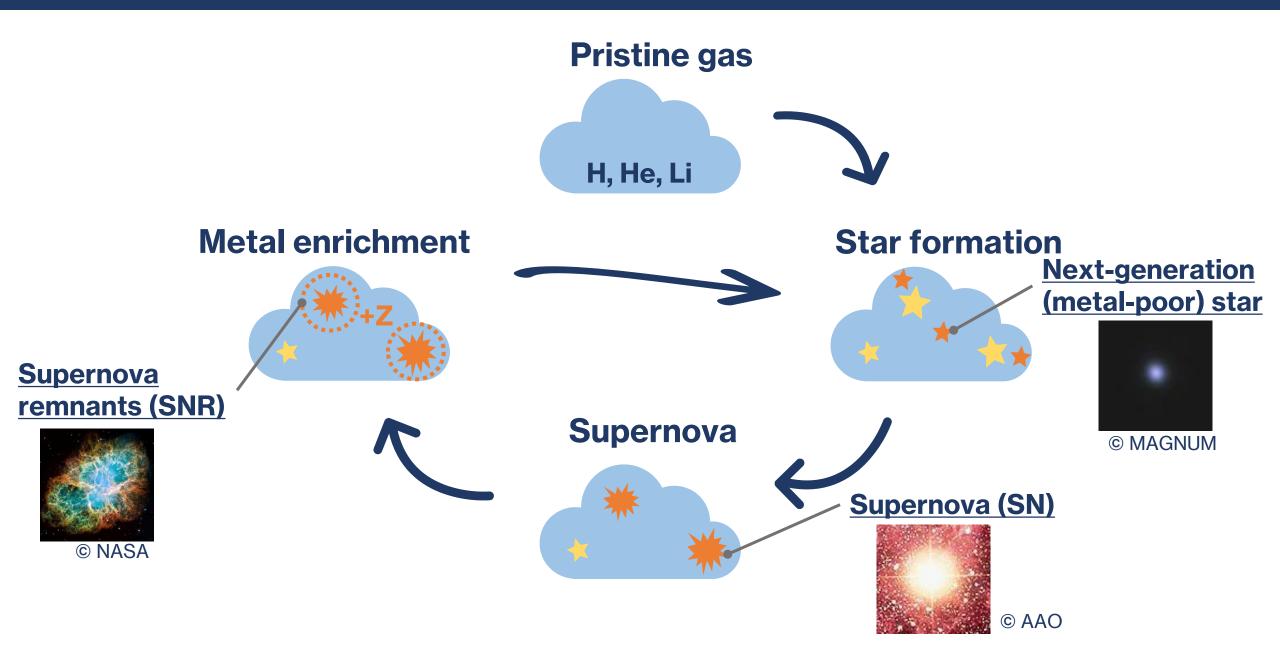
The 15th OISTER workshop (Dec 10-12, 2024)

Bright metal-poor star survey

Hiroko Okada University of Hyogo (D2)



Origin of element

1 H		_															2 He
3	4											5	6	7	8	9	10
	Be											В	C	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											ΑΙ	Si	Ρ	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
55	56	57~71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89~103	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Chemical evolution

What observation tell us?

Supernovae

OISTER

Observables:
 light curve, spectrum, polarization

• Pros:

Nucleosynthesis in a single SN can be measured

• Cons:

Abundance of only major elements (O, Si) is available

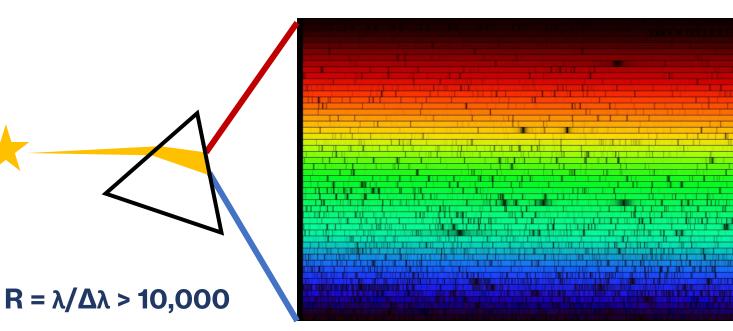
• Only for SNe in the **nearby** Universe

Metal-poor stars

- Observables:
 spectrum
- Pros:

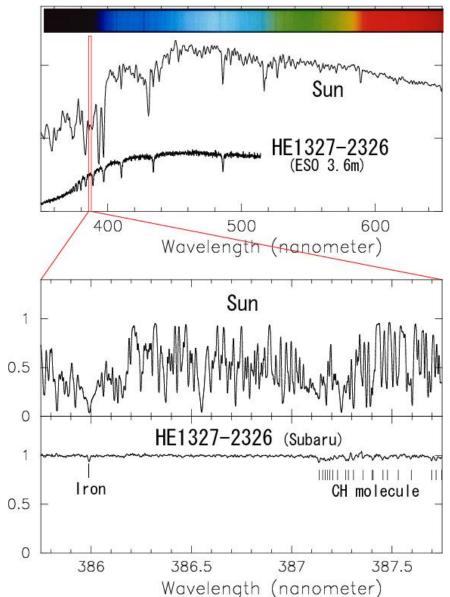
Detailed abundance including minor elements can be measured

• Cons:

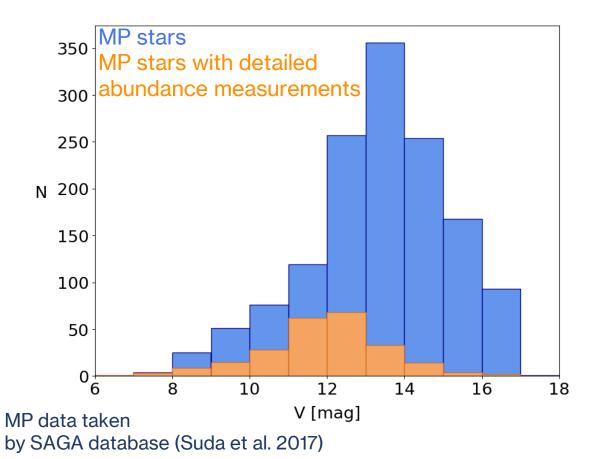

It can be a superposition of multiple SNe

Only for SNe in the early Universe

The detailed abundances in metal-poor stars are complementary with the transient observation by multi-messenger astronomy.


High-resolution spectroscopy

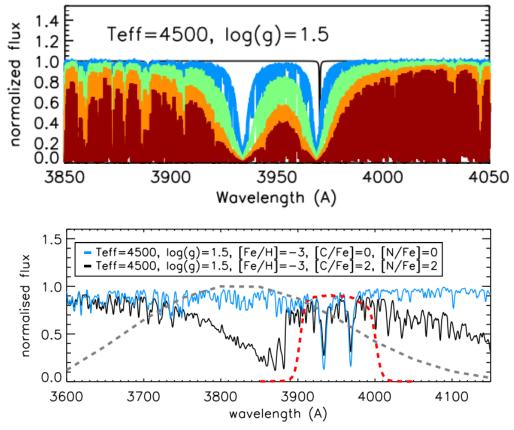
© Subaru Telescope


The detailed abundances in stars are measured by high-resolution spectroscopy.

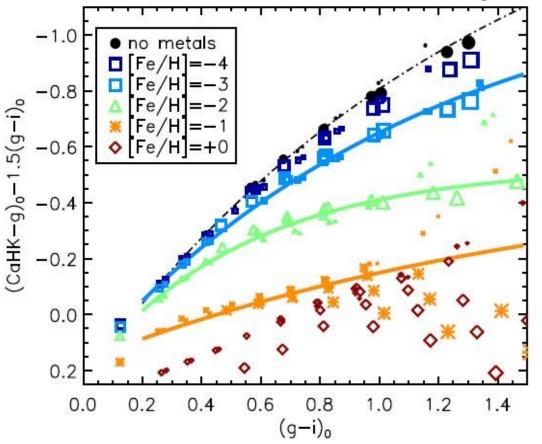
The high-resolution spectroscopy distributing the photons to large number (> 10,000) of parts is only possible for **bright objects**.

Importance of bright metal-poor stars

Bright metal-poor stars enable ① Measurement of rare elements such as r-process elements (Furutsuka-san's talk) ② Measurement of low abundance or stringent upper limit

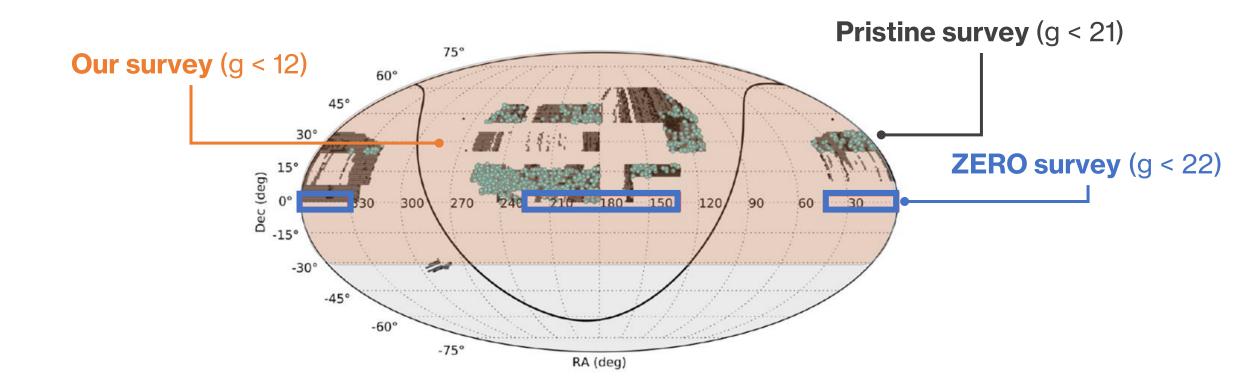


Detailed abundances are available for MP stars ([Fe/H] < -2) with V < 12, but they are still rare.


Wide (and shallow) survey is required to increase them.

Survey method: narrow-band photometry

Starkenburg et al. (2017)



Pristine survey w/ CFHT (4 m) SkyMapper survey w/ SkyMapper (1.3 m)

Stars with lower metallicity have weaker CaHK lines and are located at the left top side in color-color diagram.

Northern-sky survey for bright metal-poor stars

Aims:

- Precise measurements of rare elements
- Understanding of the nature of first stars and the origin of element

Survey design

Survey

- Narrow-band photometry with Tomo-e Gozen
- Select bright MP candidates with [Fe/H] < -2

Kiso (1.05 m)

Seimei (3.8 m)

Abundance determination

- High-res. spectroscopy with GAOES-RV
- R ~ 65000
- Opt. (5160-5930 Å)
- Individual elements (Mg, Ca, Sc, Ti, Cr, Fe, Ni, Ba)

STEP 02

Nayuta (2 m)

2 Metallicity estimation

- Medium-res. Spectroscopy
 with MALLS
- R ~ 7500
- Opt. (4900-5300Å)
- Metallicity(Fe) and alpha(Mg) abundance

Subaru (8 m)

Detailed

abundance determination

- High-res. spectroscopy with HDS
- R > 45000
- Opt. and UV
- Individual elements incl. rare elements

Survey status

Follow-ups of MP candidates

Status and Future plan

Summary

The detailed abundance available only in metal-poor stars provides unique information on the origin of element, being complementary with the multi-messenger astronomy.

Search for bright MP stars to measure detailed chemical compositions is ongoing